ﻻ يوجد ملخص باللغة العربية
Near-infrared Imager Spectrometer and Polarimeter (NISP) is a camera, an intermediate resolution spectrograph and an imaging polarimeter being developed for upcoming 2.5m telescope of Physical Research Laboratory at Mount Abu, India. NISP is designed to work in the Near-IR (0.8-2.5 micron) using a H2RG detector. Collimator and camera lenses would transfer the image from the focal plane of the telescope to the detector plane. The entire optics, mechanical support structures, detector-SIDECAR assembly will be cooled to cryo-temperatures using an open cycle Liquid Nitrogen tank inside a vacuum Dewar. GFRP support structures would be used to isolate cryogenic system from the Dewar. Two layer thermal shielding would be used to reduce the radiative heat transfer. Molecular sieve (getter) would be used to enhance the vacuum level inside Dewar. Magnet-reedswitch combination are used for absolute positioning of filterwheels. Here we describe the mechanical aspects in detail.
As a Near-IR instrument to PRLs upcoming 2.5 m telescope, NISP is designed indigeniously at PRL to serve as a multifaceted instrument. Optical, Mechanical and Electronics subsystems are being designed and developed in-house at PRL. It will consist of
NISP, a multifaceted near-infrared instrument for the upcoming 2.5m IR telescope at MIRO Gurushikhar, Mount Abu, Rajasthan, India is being developed at PRL, Ahmedabad. NISP will have wide (FOV = 10 x 10) field imaging, moderate (R=3000) spectroscopy
In this Astro2020 APC White Paper, we describe a Small Explorer (SMEX) mission concept called the Compton Spectrometer and Imager. COSI is a Compton telescope that covers the bandpass often referred to as the MeV Gap because it is the least explored
POLICAN is a near-infrared imaging linear polarimeter developed for the Cananea Near-infrared Camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, Mexico. POLICAN is mounted ahead of
The Compton Spectrometer and Imager (COSI) is a balloon-borne gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources. COSI employs a compact Compton telescope design utilizing 12 high-purity germanium double-sided strip detectors and