ﻻ يوجد ملخص باللغة العربية
We determine exactly the phase structure of a chiral magnet in one spatial dimension with the Dzyaloshinskii-Moriya (DM) interaction and a potential that is a function of the third component of the magnetization vector, $n_3$, with a Zeeman (linear with the coefficient $B$) term and an anisotropy (quadratic with the coefficient $A$) term. For large values of potential parameters $A$ and $B$, the system is in one of the ferromagnetic phases, whereas it is in the spiral phase for small values. In the spiral phase we find a continuum of spiral solutions, which are one-dimensionally modulated solutions with various periods. The ground state is determined as the spiral solution with the lowest average energy density. As the phase boundary approaches, the period of the lowest energy spiral solution diverges, and the spiral solutions become domain wall solutions with zero energy at the boundary. The energy of then domain wall solutions is positive in the homogeneous phase region, but is negative in the spiral phase region, signaling the instability of the homogeneous (ferromagnetic) state. The order of the phase transition between spiral and homogeneous phases and between polarized ($n_3=pm 1$) and canted ($n_3 ot=pm 1$) ferromagnetic phases is found to be second order.
We exhaustively construct instanton solutions and elucidate their properties in one-dimensional anti-ferromagnetic chiral magnets based on the $O(3)$ nonlinear sigma model description of spin chains with the Dzyaloshinskii-Moriya (DM) interaction. By
We report the exact dimer phase, in which the ground states are described by product of singlet dimer, in the extended XYZ model by generalizing the isotropic Majumdar-Ghosh model to the fully anisotropic region. We demonstrate that this phase can be
We study two-body interactions of magnetic skyrmions on the plane and apply them to a (mostly) analytic description of a skyrmion lattice. This is done in the context of the solvable line, a particular choice of a potential for magnetic anisotropy an
We develop the effective field theoretical descriptions of spin systems in the presence of symmetry-breaking effects: the magnetic field, single-ion anisotropy, and Dzyaloshinskii-Moriya interaction. Starting from the lattice description of spin syst
The competition between the ferromagnetic exchange interaction and anti-symmetric Dzyaloshinskii-Moriya interaction can stabilize a helical phase or support the formation of skyrmions. In thin films of chiral magnets, the current density can be large