ﻻ يوجد ملخص باللغة العربية
The dicarbon molecular anion is currently of interest as a candidate for laser cooling due to its electronic structure and favorable branching ratios to the ground electronic and vibrational states. Helium has been proposed as a buffer gas to cool the molecules internal motion. We calculate the cross sections and corresponding rates for rovibrational inelastic collisions of the dicarbon anion with He, and also with Ne and Ar, on three-dimensional ab initio potential energy surfaces using quantum scattering theory. The rates for vibrational quenching with He and Ne are very small and are similar to those for small neutral molecules in collision with helium. The quenching rates for Ar, however, are far larger than those with the other noble gases, suggesting that this may be a more suitable gas for driving vibrational quenching in traps. The implications of these results for laser cooling of the dicarbon anion are discussed.
The vibrational quenching cross sections and corresponding low-temperature rate constants for the v = 1 and v = 2 states of CN- colliding with He and Ar atoms have been computed ab initio using new three dimensional potential energy surfaces. Little
We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Sc
Electron removal in collisions of alpha particles with neon dimers is studied using an independent-atom-independent-electron model based on the semiclassical approximation of heavy-particle collision physics. The dimer is assumed to be frozen at its
We present an experimental study on the rotational inelastic scattering of OH ($X^2Pi_{3/2}, J=3/2, f$) radicals with He and D$_2$ at collision energies between 100 and 500 cm$^{-1}$ in a crossed beam experiment. The OH radicals are state selected an
In this work we discuss the rotational structure of Rydberg molecules. We calculate the complete wave function in a laboratory fixed frame and derive the transition matrix elements for the pho- toassociation of free ground state atoms. We discuss the