ترغب بنشر مسار تعليمي؟ اضغط هنا

A 55-line code for large-scale parallel topology optimization in 2D and 3D

80   0   0.0 ( 0 )
 نشر من قبل Abhinav Gupta
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a 55-line code written in python for 2D and 3D topology optimization (TO) based on the open-source finite element computing software (FEniCS), equipped with various finite element tools and solvers. PETSc is used as the linear algebra back-end, which results in significantly less computational time than standard python libraries. The code is designed based on the popular solid isotropic material with penalization (SIMP) methodology. Extensions to multiple load cases, different boundary conditions, and incorporation of passive elements are also presented. Thus, this implementation is the most compact implementation of SIMP based topology optimization for 3D as well as 2D problems. Utilizing the concept of Euclidean distance matrix to vectorize the computation of the weight matrix for the filter, we have achieved a substantial reduction in the computational time and have also made it possible for the code to work with complex ground structure configurations. We have also presented the codes extension to large-scale topology optimization problems with support for parallel computations on complex structural configuration, which could help students and researchers explore novel insights into the TO problem with dense meshes. Appendix-A contains the complete code, and the website: url{https://github.com/iitrabhi/topo-fenics} also contains the complete code.



قيم البحث

اقرأ أيضاً

Lattice Boltzmann methods are a popular mesoscopic alternative to macroscopic computational fluid dynamics solvers. Many variants have been developed that vary in complexity, accuracy, and computational cost. Extensions are available to simulate mult i-phase, multi-component, turbulent, or non-Newtonian flows. In this work we present lbmpy, a code generation package that supports a wide variety of different methods and provides a generic development environment for new schemes as well. A high-level domain-specific language allows the user to formulate, extend and test various lattice Boltzmann schemes. The method specification is represented in a symbolic intermediate representation. Transformations that operate on this intermediate representation optimize and parallelize the method, yielding highly efficient lattice Boltzmann compute kernels not only for single- and two-relaxation-time schemes but also for multi-relaxation-time, cumulant, and entropically stabilized methods. An integration into the HPC framework waLBerla makes massively parallel, distributed simulations possible, which is demonstrated through scaling experiments on the SuperMUC-NG supercomputing system
228 - David Avis , Charles Jordan 2015
We describe a new parallel implementation, mplrs, of the vertex enumeration code lrs that uses the MPI parallel environment and can be run on a network of computers. The implementation makes use of a C wrapper that essentially uses the existing lrs c ode with only minor modifications. mplrs was derived from the earlier parallel implementation plrs, written by G. Roumanis in C++. plrs uses the Boost library and runs on a shared memory machine. In developing mplrs we discovered a method of balancing the parallel tree search, called budgeting, that greatly improves parallelization beyond the bottleneck encountered previously at around 32 cores. This method can be readily adapted for use in other reverse search enumeration codes. We also report some preliminary computational results comparing parallel and sequential codes for vertex/facet enumeration problems for convex polyhedra. The problems chosen span the range from simple to highly degenerate polytopes. For most problems tested, the results clearly show the advantage of using the parallel implementation mplrs of the reverse search based code lrs, even when as few as 8 cores are available. For some problems almost linear speedup was observed up to 1200 cores, the largest number of cores tested.
Current and future astronomical surveys are producing catalogs with millions and billions of objects. On-line access to such big datasets for data mining and cross-correlation is usually as highly desired as unfeasible. Providing these capabilities i s becoming critical for the Virtual Observatory framework. In this paper we present various performance tests that show how using Relational Database Management Systems (RDBMS) and a Zoning algorithm to partition and parallelize the computation, we can facilitate large-scale query and cross-match.
Our goal is compression of massive-scale grid-structured data, such as the multi-terabyte output of a high-fidelity computational simulation. For such data sets, we have developed a new software package called TuckerMPI, a parallel C++/MPI software p ackage for compressing distributed data. The approach is based on treating the data as a tensor, i.e., a multidimensional array, and computing its truncated Tucker decomposition, a higher-order analogue to the truncated singular value decomposition of a matrix. The result is a low-rank approximation of the original tensor-structured data. Compression efficiency is achieved by detecting latent global structure within the data, which we contrast to most compression methods that are focused on local structure. In this work, we describe TuckerMPI, our implementation of the truncated Tucker decomposition, including details of the data distribution and in-memory layouts, the parallel and serial implementations of the key kernels, and analysis of the storage, communication, and computational costs. We test the software on 4.5 terabyte and 6.7 terabyte data sets distributed across 100s of nodes (1000s of MPI processes), achieving compression rates between 100-200,000$times$ which equates to 99-99.999% compression (depending on the desired accuracy) in substantially less time than it would take to even read the same dataset from a parallel filesystem. Moreover, we show that our method also allows for reconstruction of partial or down-sampled data on a single node, without a parallel computer so long as the reconstructed portion is small enough to fit on a single machine, e.g., in the instance of reconstructing/visualizing a single down-sampled time step or computing summary statistics.
56 - David Defour 2020
The typical processors used for scientific computing have fixed-width data-paths. This implies that mathematical libraries were specifically developed to target each of these fixed precisions (binary16, binary32, binary64). However, to address the in creasing energy consumption and throughput requirements of scientific applications, library and hardware designers are moving beyond this one-size-fits-all approach. In this article we propose to study the effects and benefits of using user-defined floating-point formats and target accuracies in calculations involving mathematical functions. Our tool collects input-data profiles and iteratively explores lower precisions for each call-site of a mathematical function in user applications. This profiling data will be a valuable asset for specializing and fine-tuning mathematical function implementations for a given application. We demonstrate the tools capabilities on SGP4, a satellite tracking application. The profile data shows the potential for specialization and provides insight into answering where it is useful to provide variable-precision designs for elementary function evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا