ﻻ يوجد ملخص باللغة العربية
Millicharged particles (mCPs) are hypothesized particles possessing an electric charge that is a fraction of the charge of the electron. We report a search for mCPs with charges $gtrsim 10^{-4}~e$ that improves sensitivity to their abundance in matter by roughly two orders of magnitude relative to previous searches. This search is sensitive to such particles over a wide range of masses and charges for which they can form stable bound states with matter, corresponding to a gap in parameter space that is beyond the reach of previous searches from accelerators, colliders, cosmic-ray experiments, and cosmological constraints.
A search for millicharged particles, a simple extension of the standard model, has been performed with the ArgoNeuT detector exposed to the Neutrinos at the Main Injector beam at Fermilab. The ArgoNeuT Liquid Argon Time Projection Chamber detector en
We study the production of exotic millicharged particles (MCPs) from cosmic ray-atmosphere collisions which constitutes a permanent MCP production source for all terrestrial experiments Our calculation of the MCP flux can be used to reinterpret exist
We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties
We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In the wave-like regime of high occupation numbers, annihilation into gauge bosons can be drastically enhanced by parametric resonance. The millic
Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such millicharged particles has been carried out at SLAC. Thi