ﻻ يوجد ملخص باللغة العربية
We use a sample of $z=0$ galaxies visually classified as slow rotators (SRs) in the EAGLE hydrodynamical simulations to explore the effect of galaxy mergers on their formation, characterise their intrinsic galaxy properties, and study the connection between quenching and kinematic transformation. SRs that have had major or minor mergers (mass ratios $ge 0.3$ and $0.1-0.3$, respectively) tend to have a higher triaxiality parameter and ex-situ stellar fractions than those that had exclusively very minor mergers or formed in the absence of mergers (no-merger SRs). No-merger SRs are more compact, have lower black hole-to-stellar mass ratios and quenched later than other SRs, leaving imprints on their $z=0$ chemical composition. For the vast majority of SRs we find that quenching, driven by active galactic nuclei feedback, precedes kinematic transformation, except for satellite SRs, in which these processes happen in tandem. However, in $approx 50$% of these satellites, satellite-satellite mergers are responsible for their SR fate, while environment (i.e. tidal field and interactions with the central) can account for the transformation in the rest. By splitting SRs into kinematic sub-classes, we find that flat SRs prefer major mergers; round SRs prefer minor or very minor mergers; prolate SRs prefer gas-poor mergers. Flat and prolate SRs are more common among satellites hosted by massive halos ($>10^{13.6},rm M_{odot}$) and centrals of high masses ($M_{star} > 10^{10.5}, rm M_{odot}$). Although EAGLE galaxies display kinematic properties that broadly agree with observations, there are areas of disagreement, such as inverted stellar age and velocity dispersion profiles. We discuss these and how upcoming simulations can solve them.
We use the eagle simulations to study the connection between the quenching timescale, $tau_{rm Q}$, and the physical mechanisms that transform star-forming galaxies into passive galaxies. By quantifying $tau_{rm Q}$ in two complementary ways - as the
We investigate correlations between different physical properties of star-forming galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological hydrodynamical simulation suite over the redshift range $0le zle 4.5$. A
We present interferometric observations of HI in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive HI searches in 34 of the 36 slow rotators. The aggregate detection rate is 32% $pm$ 8%, consistent wi
We investigate the abundance of galactic molecular hydrogen (H$_2$) in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-pro
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the HI content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed HI mass-environment trends very well, while semi-analytic model