ﻻ يوجد ملخص باللغة العربية
We make forecasts for the impact a future midband space-based gravitational wave experiment, most sensitive to $10^{-2}- 10$ Hz, could have on potential detections of cosmological stochastic gravitational wave backgrounds (SGWBs). Specific proposed midband experiments considered are TianGo, B-DECIGO and AEDGE. We propose a combined power-law integrated sensitivity (CPLS) curve combining GW experiments over different frequency bands, which shows the midband improves sensitivity to SGWBs by up to two orders of magnitude at $10^{-2} - 10$ Hz. We consider GW emission from cosmic strings and phase transitions as benchmark examples of cosmological SGWBs. We explicitly model various astrophysical SGWB sources, most importantly from unresolved black hole mergers. Using Markov Chain Monte Carlo, we demonstrated that midband experiments can, when combined with LIGO A+ and LISA, significantly improve sensitivities to cosmological SGWBs and better separate them from astrophysical SGWBs. In particular, we forecast that a midband experiment improves sensitivity to cosmic string tension $Gmu$ by up to a factor of $10$, driven by improved component separation from astrophysical sources. For phase transitions, a midband experiment can detect signals peaking at $0.1 - 1$ Hz, which for our fiducial model corresponds to early Universe temperatures of $T_*sim 10^4 - 10^6$ GeV, generally beyond the reach of LIGO and LISA. The midband closes an energy gap and better captures characteristic spectral shape information. It thus substantially improves measurement of the properties of phase transitions at lower energies of $T_* sim O(10^3)$ GeV, potentially relevant to new physics at the electroweak scale, whereas in this energy range LISA alone will detect an excess but not effectively measure the phase transition parameters. Our modelling code and chains are publicly available.
The recent Advanced LIGO and Advanced Virgo joint observing runs have not claimed a stochastic gravitational-wave background detection, but one expects this to change as the sensitivity of the detectors improves. The challenge of claiming a true dete
Third-generation gravitational wave detectors, such as the Einstein Telescope and Cosmic Explorer, will detect a bunch of gravitational-wave (GW) signals originating from the coalescence of binary neutron star (BNS) and binary black hole (BBH) system
Among all cosmological quantum-gravity or quantum-gravity-inspired scenarios, only very few predict a blue-tilted primordial tensor spectrum. We explore five of them and check whether they can generate a stochastic gravitational-wave background detec
Detection of a stochastic background of gravitational waves is likely to occur in the next few years. Beyond searches for the isotropic component of SGWBs, there have been various mapping methods proposed to target anisotropic backgrounds. Some of th
We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers,