ﻻ يوجد ملخص باللغة العربية
Motivated by the recent achievements in the realization of strongly correlated and topological phases in twisted van der Waals heterostructures, we study the low-energy properties of a twisted bilayer of nodal superconductors. It is demonstrated that the spectrum of the superconducting Dirac quasiparticles close to the gap nodes is strongly renormalized by twisting and can be controlled with magnetic fields, current, or interlayer voltage. In particular, the application of an interlayer current transforms the system into a topological superconductor, opening a topological gap and resulting in a quantized thermal Hall effect with gapless, neutral edge modes. Close to the magic angle, where the Dirac velocity of the quasiparticles is found to vanish, a correlated superconducting state breaking time-reversal symmetry is shown to emerge. Estimates for a number of superconducting materials, such as cuprate, heavy fermion, and organic nodal superconductors, show that twisted bilayers of nodal superconductors can be readily realized with current experimental techniques.
Motivated by the recent proposals for unconventional emergent physics in twisted bilayers of nodal superconductors, we study the peculiarities of the Josephson effect at the twisted interface between $d$-wave superconductors. We demonstrate that for
We examine pinning and dynamics of Abrikosov vortices interacting with pinning centers placed in a moire pattern for varied moire lattice angles. We find a series of magic angles at which the critical current shows a pronounced dip corresponding to l
We investigate the properties of the coexistence phase of itinerant antiferromagnetism and nodal $d$-wave superconductivity (Q-phase) discovered in heavy fermion CeCoIn5 under applied magnetic field. We solve the minimal model that includes $d$-wave
Landau levels (LL) have been predicted to emerge in systems with Dirac nodal points under applied non-uniform strain. We consider 2D, $d_{xy}$ singlet (2D-S) and 3D $p pm i p$ equal-spin triplet (3D-T) superconductors (SCs). We demonstrate the spinfu
We study the topological properties of the nodal-line semimetal superconductor. The single band inversion and the double band inversion coexist in an $s$-wave nodal-line semimetal superconductor. In the single/double band inversion region, the system