ﻻ يوجد ملخص باللغة العربية
Although current deep learning-based face forgery detectors achieve impressive performance in constrained scenarios, they are vulnerable to samples created by unseen manipulation methods. Some recent works show improvements in generalisation but rely on cues that are easily corrupted by common post-processing operations such as compression. In this paper, we propose LipForensics, a detection approach capable of both generalising to novel manipulations and withstanding various distortions. LipForensics targets high-level semantic irregularities in mouth movements, which are common in many generated videos. It consists in first pretraining a spatio-temporal network to perform visual speech recognition (lipreading), thus learning rich internal representations related to natural mouth motion. A temporal network is subsequently finetuned on fixed mouth embeddings of real and forged data in order to detect fake videos based on mouth movements without overfitting to low-level, manipulation-specific artefacts. Extensive experiments show that this simple approach significantly surpasses the state-of-the-art in terms of generalisation to unseen manipulations and robustness to perturbations, as well as shed light on the factors responsible for its performance. Code is available on GitHub.
Rapid progress in deep learning is continuously making it easier and cheaper to generate video forgeries. Hence, it becomes very important to have a reliable way of detecting these forgeries. This paper describes such an approach for various tamperin
With the rapid development of facial manipulation techniques, face forgery detection has received considerable attention in digital media forensics due to security concerns. Most existing methods formulate face forgery detection as a classification p
We present our on-going effort of constructing a large-scale benchmark for face forgery detection. The first version of this benchmark, DeeperForensics-1.0, represents the largest face forgery detection dataset by far, with 60,000 videos constituted
This paper reports methods and results in the DeeperForensics Challenge 2020 on real-world face forgery detection. The challenge employs the DeeperForensics-1.0 dataset, one of the most extensive publicly available real-world face forgery detection d
We present a learning-based method for detecting real and fake deepfake multimedia content. To maximize information for learning, we extract and analyze the similarity between the two audio and visual modalities from within the same video. Additional