ترغب بنشر مسار تعليمي؟ اضغط هنا

FlowMOT: 3D Multi-Object Tracking by Scene Flow Association

269   0   0.0 ( 0 )
 نشر من قبل Guangyao Zhai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most end-to-end Multi-Object Tracking (MOT) methods face the problems of low accuracy and poor generalization ability. Although traditional filter-based methods can achieve better results, they are difficult to be endowed with optimal hyperparameters and often fail in varying scenarios. To alleviate these drawbacks, we propose a LiDAR-based 3D MOT framework named FlowMOT, which integrates point-wise motion information with the traditional matching algorithm, enhancing the robustness of the motion prediction. We firstly utilize a scene flow estimation network to obtain implicit motion information between two adjacent frames and calculate the predicted detection for each old tracklet in the previous frame. Then we use Hungarian algorithm to generate optimal matching relations with the ID propagation strategy to finish the tracking task. Experiments on KITTI MOT dataset show that our approach outperforms recent end-to-end methods and achieves competitive performance with the state-of-the-art filter-based method. In addition, ours can work steadily in the various-speed scenarios where the filter-based methods may fail.



قيم البحث

اقرأ أيضاً

Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di stance metric. The key challenges to increase tracking accuracy lie in data association and track life cycle management. We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules to provide robust and data-driven tracking results. First, we learn how to fuse features from 2D images and 3D LiDAR point clouds to capture the appearance and geometric information of an object. Second, we propose to learn a metric that combines the Mahalanobis and feature distances when comparing a track and a new detection in data association. And third, we propose to learn when to initialize a track from an unmatched object detection. Through extensive quantitative and qualitative results, we show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
Tracking of objects in 3D is a fundamental task in computer vision that finds use in a wide range of applications such as autonomous driving, robotics or augmented reality. Most recent approaches for 3D multi object tracking (MOT) from LIDAR use obje ct dynamics together with a set of handcrafted features to match detections of objects. However, manually designing such features and heuristics is cumbersome and often leads to suboptimal performance. In this work, we instead strive towards a unified and learning based approach to the 3D MOT problem. We design a graph structure to jointly process detection and track states in an online manner. To this end, we employ a Neural Message Passing network for data association that is fully trainable. Our approach provides a natural way for track initialization and handling of false positive detections, while significantly improving track stability. We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
The ability to simultaneously track and reconstruct multiple objects moving in the scene is of the utmost importance for robotic tasks such as autonomous navigation and interaction. Virtually all of the previous attempts to map multiple dynamic objec ts have evolved to store individual objects in separate reconstruction volumes and track the relative pose between them. While simple and intuitive, such formulation does not scale well with respect to the number of objects in the scene and introduces the need for an explicit occlusion handling strategy. In contrast, we propose a map representation that allows maintaining a single volume for the entire scene and all the objects therein. To this end, we introduce a novel multi-object TSDF formulation that can encode multiple object surfaces at any given location in the map. In a multiple dynamic object tracking and reconstruction scenario, our representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. We evaluate the proposed TSDF++ formulation on a public synthetic dataset and demonstrate its ability to preserve reconstructions of occluded surfaces when compared to the standard TSDF map representation.
3D multi-object detection and tracking are crucial for traffic scene understanding. However, the community pays less attention to these areas due to the lack of a standardized benchmark dataset to advance the field. Moreover, existing datasets (e.g., KITTI) do not provide sufficient data and labels to tackle challenging scenes where highly interactive and occluded traffic participants are present. To address the issues, we present the Honda Research Institute 3D Dataset (H3D), a large-scale full-surround 3D multi-object detection and tracking dataset collected using a 3D LiDAR scanner. H3D comprises of 160 crowded and highly interactive traffic scenes with a total of 1 million labeled instances in 27,721 frames. With unique dataset size, rich annotations, and complex scenes, H3D is gathered to stimulate research on full-surround 3D multi-object detection and tracking. To effectively and efficiently annotate a large-scale 3D point cloud dataset, we propose a labeling methodology to speed up the overall annotation cycle. A standardized benchmark is created to evaluate full-surround 3D multi-object detection and tracking algorithms. 3D object detection and tracking algorithms are trained and tested on H3D. Finally, sources of errors are discussed for the development of future algorithms.
Driven by recent advances in object detection with deep neural networks, the tracking-by-detection paradigm has gained increasing prevalence in the research community of multi-object tracking (MOT). It has long been known that appearance information plays an essential role in the detection-to-track association, which lies at the core of the tracking-by-detection paradigm. While most existing works consider the appearance distances between the detections and the tracks, they ignore the statistical information implied by the historical appearance distance records in the tracks, which can be particularly useful when a detection has similar distances with two or more tracks. In this work, we propose a hybrid track association (HTA) algorithm that models the historical appearance distances of a track with an incremental Gaussian mixture model (IGMM) and incorporates the derived statistical information into the calculation of the detection-to-track association cost. Experimental results on three MOT benchmarks confirm that HTA effectively improves the target identification performance with a small compromise to the tracking speed. Additionally, compared to many state-of-the-art trackers, the DeepSORT tracker equipped with HTA achieves better or comparable performance in terms of the balance of tracking quality and speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا