Cosmic Acceleration in an Extended Brans-Dicke-Higgs Theory


الملخص بالإنكليزية

We consider an extended scalar-tensor theory of gravity where the action has two interacting scalar fields, a Brans-Dicke field which makes the effective Newtonian constant a function of coordinates and a Higgs field which has derivative and non-derivative interaction with the lagrangian. There is a non-trivial interaction between the two scalar fields which dictates the dominance of different scalar fields in different era. We investigate if this setup can describe a late-time cosmic acceleration preceded by a smooth transition from deceleration in recent past. From a cosmological reconstruction technique we find the scalar profiles as a function of redshift. We find the constraints on the model parameters from a Markov Chain Monte Carlo analysis using observational data. Evolution of an effective equation of state, matter density contrast and thermodynamic equilibrium of the universe are studied and their significance in comparison with a LCDM cosmology is discussed.

تحميل البحث