ترغب بنشر مسار تعليمي؟ اضغط هنا

Reasoning in Dialog: Improving Response Generation by Context Reading Comprehension

253   0   0.0 ( 0 )
 نشر من قبل Xiuying Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In multi-turn dialog, utterances do not always take the full form of sentences cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the models ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.



قيم البحث

اقرأ أيضاً

Reasoning machine reading comprehension (R-MRC) aims to answer complex questions that require discrete reasoning based on text. To support discrete reasoning, evidence, typically the concise textual fragments that describe question-related facts, inc luding topic entities and attribute values, are crucial clues from question to answer. However, previous end-to-end methods that achieve state-of-the-art performance rarely solve the problem by paying enough emphasis on the modeling of evidence, missing the opportunity to further improve the models reasoning ability for R-MRC. To alleviate the above issue, in this paper, we propose an evidence-emphasized discrete reasoning approach (EviDR), in which sentence and clause level evidence is first detected based on distant supervision, and then used to drive a reasoning module implemented with a relational heterogeneous graph convolutional network to derive answers. Extensive experiments are conducted on DROP (discrete reasoning over paragraphs) dataset, and the results demonstrate the effectiveness of our proposed approach. In addition, qualitative analysis verifies the capability of the proposed evidence-emphasized discrete reasoning for R-MRC.
Recent powerful pre-trained language models have achieved remarkable performance on most of the popular datasets for reading comprehension. It is time to introduce more challenging datasets to push the development of this field towards more comprehen sive reasoning of text. In this paper, we introduce a new Reading Comprehension dataset requiring logical reasoning (ReClor) extracted from standardized graduate admission examinations. As earlier studies suggest, human-annotated datasets usually contain biases, which are often exploited by models to achieve high accuracy without truly understanding the text. In order to comprehensively evaluate the logical reasoning ability of models on ReClor, we propose to identify biased data points and separate them into EASY set while the rest as HARD set. Empirical results show that state-of-the-art models have an outstanding ability to capture biases contained in the dataset with high accuracy on EASY set. However, they struggle on HARD set with poor performance near that of random guess, indicating more research is needed to essentially enhance the logical reasoning ability of current models.
Procedural texts often describe processes (e.g., photosynthesis and cooking) that happen over entities (e.g., light, food). In this paper, we introduce an algorithm for procedural reading comprehension by translating the text into a general formalism that represents processes as a sequence of transitions over entity attributes (e.g., location, temperature). Leveraging pre-trained language models, our model obtains entity-aware and attribute-aware representations of the text by joint prediction of entity attributes and their transitions. Our model dynamically obtains contextual encodings of the procedural text exploiting information that is encoded about previous and current states to predict the transition of a certain attribute which can be identified as a span of text or from a pre-defined set of classes. Moreover, our model achieves state of the art results on two procedural reading comprehension datasets, namely ProPara and npn-cooking
104 - Kai Sun , Dian Yu , Jianshu Chen 2020
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we call it contextualized knowledge. Each piece of contextualized knowledge consists of a pair of interrelated verbal and nonverbal messages extracted from a script and the scene in which they occur as context to implicitly represent the relation between the verbal and nonverbal messages, which are originally conveyed by different modalities within the script. We propose a two-stage fine-tuning strategy to use the large-scale weakly-labeled data based on a single type of contextualized knowledge and employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader. Experimental results demonstrate that our method outperforms a state-of-the-art baseline by a 4.3% improvement in accuracy on the machine reading comprehension dataset C^3, wherein most of the questions require unstated prior knowledge.
Machine comprehension of texts longer than a single sentence often requires coreference resolution. However, most current reading comprehension benchmarks do not contain complex coreferential phenomena and hence fail to evaluate the ability of models to resolve coreference. We present a new crowdsourced dataset containing more than 24K span-selection questions that require resolving coreference among entities in over 4.7K English paragraphs from Wikipedia. Obtaining questions focused on such phenomena is challenging, because it is hard to avoid lexical cues that shortcut complex reasoning. We deal with this issue by using a strong baseline model as an adversary in the crowdsourcing loop, which helps crowdworkers avoid writing questions with exploitable surface cues. We show that state-of-the-art reading comprehension models perform significantly worse than humans on this benchmark---the best model performance is 70.5 F1, while the estimated human performance is 93.4 F1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا