ﻻ يوجد ملخص باللغة العربية
The (1+1)-dimensional classical $varphi^4$ theory contains stable, topological excitations in the form of solitary waves or kinks, as well as stable but non-topological solutions, such as the oscillon. Both are used in effective descriptions of excitations throughout myriad fields of physics. The oscillon is well-known to be a coherent, particle-like solution when introduced as an Ansatz in the $varphi^4$ theory. Here, we show that oscillons also arise naturally in the dynamics of the theory, in particular as the result of kink-antikink collisions in the presence of an impurity. We show that in addition to the scattering of kinks and the formation of a breather, both bound oscillon pairs and propagating oscillons may emerge from the collision. We discuss their resonances and critical velocity as a function of impurity strength and highlight the role played by the impurity in the scattering process.
Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptiona
We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy,
Since the experimental realization of graphene1, extensive theoretical work has focused on short-range disorder2-5, ripples6, 7, or charged impurities2, 3, 8-13 to explain the conductivity as a function of carrier density sigma_(n)[1,14-18], and its
Recent studies have emphasized the important role that a shape deformability of scalar-field models pertaining to the same class with the standard $phi^4$ field, can play in controlling the production of a specific type of breathing bound states so-c
We investigate the bursts of electromagnetic and scalar radiation resulting from the collision, and merger of oscillons made from axion-like particles using 3+1 dimensional lattice simulations of the coupled axion-gauge field system. The radiation in