ﻻ يوجد ملخص باللغة العربية
In these lecture notes for a summer mini-course, we provide an exposition on quantum groups and Hecke algebras, including (quasi) R-matrix, canonical basis, and $q$-Schur duality. Then we formulate their counterparts in the setting of $imath$quantum groups arising from quantum symmetric pairs, including (quasi) K-matrix, $imath$-canonical basis, and $imath$Schur duality. As an application, the ($imath$-)canonical bases are used to formulate Kazhdan-Lusztig theories and character formulas in the BGG categories for Lie (super)algebras of type A-D. Finally, geometric constructions for $q$-Schur and $imath$Schur dualities are provided.
Structures in low-dimensional topology and low-dimensional geometry -- often combined with ideas from (quantum) field theory -- can explain and inspire concepts in algebra and in representation theory and their categorifie
These myh lectures at the Park City conference in 1998.
There is both theoretical and numerical evidence that the set of irreducible representations of a reductive group over local or finite fields is naturally partitioned into families according to analytic properties of representations. Examples of such
These are lecture notes written at the University of Zurich during spring 2014 and spring 2015. The first part of the notes gives an introduction to probability theory. It explains the notion of random events and random variables, probability measure
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfr