ترغب بنشر مسار تعليمي؟ اضغط هنا

Tiny-box: A tool for the versatile development and characterization of low noise fast X-ray imaging detectors

196   0   0.0 ( 0 )
 نشر من قبل Tanmoy Chattopadhyay
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray Charge Coupled Devices (CCDs) have been the workhorse for soft X-ray astronomical instruments for the past quarter century. They provide broad energy response, extremely low electronic read noise, and good energy resolution in soft X-rays. These properties, along with the large arrays and small pixel sizes available with modern-day CCDs, make them a potential candidate for next generation astronomical X-ray missions equipped with large collecting areas, high angular resolutions and wide fields of view, enabling observation of the faint, diffuse and high redshift X-ray universe. However, such high collecting area (about 30 times Chandra) requires these detectors to have an order of magnitude faster readout than current CCDs to avoid saturation and pile up effects. In this context, Stanford University and MIT have initiated the development of fast readout X-ray cameras. As a tool for this development, we have designed a fast readout, low noise electronics board (intended to work at a 5 Megapixel per second data rate) coupled with an STA Archon controller to readout a 512 x 512 CCD (from MIT Lincoln Laboratory). This versatile setup allows us to study a number of parameters and operation conditions including the option for digital shaping. In this paper, we describe the characterization test stand, the concept and development of the readout electronics, and simulation results. We also report the first measurements of read noise, energy resolution and other parameters from this set up. While this is very much a prototype, we plan to use larger, multi-node CCD devices in the future with dedicated ASIC readout systems to enable faster, parallel readout of the CCDs.



قيم البحث

اقرأ أيضاً

We are planning a future gamma-ray burst (GRB) mission HiZ-GUNDAM to probe the early universe beyond the redshift of z > 7. Now we are developing a small prototype model of wide-field low-energy X-ray imaging detectors to observe high-z GRBs, which c over the energy range of 1 - 20 keV. In this paper, we report overview of its prototype system and performance, especially focusing on the characteristics and radiation tolerance of high gain analog ASIC specifically designed to read out small charge signals.
We have been developing monolithic active pixel sensors, known as Kyotos X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixe l offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A fully depleted SOI with a thick depletion layer and back illumination offers wide band coverage of 0.3--40 keV. Here, we report recent progress in the X-ray SOIPIX development. In this study, we achieved an energy resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the frame readout mode, which allows us to clearly resolve Mn-K$alpha$ and K$beta$. Moreover, we produced a fully depleted layer with a thickness of $500~{rm mu m}$. The event-driven readout mode has already been successfully demonstrated.
There is growing interest in high-energy astrophysics community for the development of sensitive instruments in the hard X-ray energy extending to few hundred keV. This requires position sensitive detector modules with high efficiency in the hard X-r ay energy range. Here, we present development of a detector module, which consists of 25 mm x 25 mm CeBr3 scintillation detector, read out by a custom designed two dimensional array of Silicon Photo-Multipliers (SiPM). Readout of common cathode of SiPMs provides the spectral measurement whereas the readout of individual SiPM anodes provides measurement of interaction position in the crystal. Preliminary results for spectral and position measurements with the detector module are presented here.
We present general algorithms to convert scattering data of linear and area detectors recorded in various scattering geometries to reciprocal space coordinates. The presented algorithms work for any goniometer configuration including popular four-cir cle, six-circle and kappa goniometers. We avoid the use of commonly employed approximations and therefore provide algorithms which work also for large detectors at small sample detector distances. A recipe for determining the necessary detector parameters including mostly ignored misalignments is given. The algorithms are implemented in a freely available open-source package.
We are currently developing Cadmium Zinc Telluride (CZT) detectors for a next-generation space-borne hard X-ray telescope which can follow up on the highly successful NuSTAR (Nuclear Spectroscopic Telescope Array) mission. Since the launch of NuSTAR in 2012, there have been major advances in the area of X-ray mirrors, and state-of-the-art X-ray mirrors can improve on NuSTARs angular resolution of ~1 arcmin Half Power Diameter (HPD) to 15 or even 5 HPD. Consequently, the size of the detector pixels must be reduced to match this resolution. This paper presents detailed simulations of relatively thin (1 mm thick) CZT detectors with hexagonal pixels at a next-neighbor distance of 150 $mu$m. The simulations account for the non-negligible spatial extent of the deposition of the energy of the incident photon, and include detailed modeling of the spreading of the free charge carriers as they move toward the detector electrodes. We discuss methods to reconstruct the energies of the incident photons, and the locations where the photons hit the detector. We show that the charge recorded in the brightest pixel and six adjacent pixels suffices to obtain excellent energy and spatial resolutions. The simulation results are being used to guide the design of a hybrid application-specific integrated circuit (ASIC)-CZT detector package.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا