ﻻ يوجد ملخص باللغة العربية
Binary black holes with spins that are aligned with the orbital angular momentum do not precess. However, post-Newtonian calculations predict that up-down binaries, in which the spin of the heavier (lighter) black hole is aligned (antialigned) with the orbital angular momentum, are unstable when the spins are slightly perturbed from perfect alignment. This instability provides a possible mechanism for the formation of precessing binaries in environments where sources are preferentially formed with (anti) aligned spins. In this paper, we present the first full numerical relativity simulations capturing this instability. These simulations span $sim 100$ orbits and $sim 3$-$5$ precession cycles before merger, making them some of the longest numerical relativity simulations to date. Initialized with a small perturbation of $1^{circ}$-$10^{circ}$, the instability causes a dramatic growth of the spin misalignments, which can reach $sim 90^{circ}$ near merger. We show that this leaves a strong imprint on the subdominant modes of the gravitational wave signal, which can potentially be used to distinguish up-down binaries from other sources. Finally, we show that post-Newtonian and effective-one-body approximants are able to reproduce the unstable dynamics of up-down binaries extracted from numerical relativity.
Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been testbeds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium soluti
By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI) supernova is expected to prevent the formation
Recently neutral and charged black-hole solutions were found for static perfect fluid with the equation of state $p(r)=-rho(r)/3$, for fluid only as well as for fluid in the presence of electric field. In those works, the stability of the black holes
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different
In response to LIGOs observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple r