ﻻ يوجد ملخص باللغة العربية
The role of non-stoquasticity in the field of quantum annealing and adiabatic quantum computing is an actively debated topic. We study a strongly-frustrated quasi-one-dimensional quantum Ising model on a two-leg ladder to elucidate how a first-order phase transition with a topological origin is affected by interactions of the $pm XX$-type. Such interactions are sometimes known as stoquastic (negative sign) and non-stoquastic (positive sign) catalysts. Carrying out a symmetry-preserving real-space renormalization group analysis and extensive density-matrix renormalization group computations, we show that the phase diagrams obtained by these two methods are in qualitative agreement with each other and reveal that the first-order quantum phase transition of a topological nature remains stable against the introduction of both $XX$-type catalysts. This is the first study of the effects of non-stoquasticity on a first-order phase transition between topologically distinct phases. Our results indicate that non-stoquastic catalysts are generally insufficient for removing topological obstacles in quantum annealing and adiabatic quantum computing.
We argue that a complete description of quantum annealing (QA) implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show
Stoquastic Hamiltonians are characterized by the property that their off-diagonal matrix elements in the standard product basis are real and non-positive. Many interesting quantum models fall into this class including the Transverse field Ising Model
There is a tremendous interest in fabricating superconducting flux circuits that are nonstoquastic---i.e., have positive off-diagonal matrix elements---in their qubit representation, as these circuits are thought to be unsimulable by classical approa
We study the structure of the ground states of local stoquastic Hamiltonians and show that under mild assumptions the following distributions can efficiently approximate one another: (a) distributions arising from ground states of stoquastic Hamilton
Strongly interacting quantum systems described by non-stoquastic Hamiltonians exhibit rich low-temperature physics. Yet, their study poses a formidable challenge, even for state-of-the-art numerical techniques. Here, we investigate systematically the