ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a universal model for spatially structured populations

124   0   0.0 ( 0 )
 نشر من قبل Anne-Florence Bitbol
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microbial populations often have complex spatial structures, with homogeneous competition holding only at a local scale. Population structure can strongly impact evolution, in particular by affecting the fixation probability of mutants. Here, we propose a model of structured microbial populations on graphs, where each node of the graph contains a well-mixed deme whose size can fluctuate, and where migrations are independent from birth and death events. We study analytically and numerically the mutant fixation probabilities in different structures, in the rare migration regime. In particular, we demonstrate that the star graph continuously transitions between amplifying and suppressing natural selection as migration rate asymmetry is varied. This elucidates the apparent paradox in existing constant-size models on graphs, where the star is an amplifier or a suppressor depending on the details of the dynamics or update rule chosen, e.g. whether each birth event precedes or follows a death event. The celebrated amplification property of the star graph for large populations is preserved in our model, for specific migration asymmetry. We further demonstrate a general mapping between our model and constant-size models on graphs, under a constraint on migration rates, which directly stems from assuming constant size. By lifting this constraint, our model reconciles and generalizes previous results, showing that migration rate asymmetry is key to determining whether a given population structure amplifies or suppresses natural selection.



قيم البحث

اقرأ أيضاً

Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health, regarding pathogen emergence, maintenance, and evolution. The full description of host-multipatho gen systems is however challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.
Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, howeve r, proved to be sensitive to the details of the underlying topology and dynamics. Here we introduce a minimal population structure that is described by two distinct hierarchical levels of interaction. We believe this model is able to identify effects of spatial structure that do not depend on the details of the topology. We derive the dynamics governing the evolution of a system starting from fundamental individual level stochastic processes through two successive meanfield approximations. In our model of population structure the topology of interactions is described by only two parameters: the effective population size at the local scale and the relative strength of local dynamics to global mixing. We demonstrate, for example, the existence of a continuous transition leading to the dominance of cooperation in populations with hierarchical levels of unstructured mixing as the benefit to cost ratio becomes smaller then the local population size. Applying our model of spatial structure to the repeated prisoners dilemma we uncover a novel and counterintuitive mechanism by which the constant influx of defectors sustains cooperation. Further exploring the phase space of the repeated prisoners dilemma and also of the rock-paper-scissor game we find indications of rich structure and are able to reproduce several effects observed in other models with explicit spatial embedding, such as the maintenance of biodiversity and the emergence of global oscillations.
In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyze how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the dist ribution of types as mutations march toward fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death-birth updating or for any process that combines birth-death and death-birth updating. If the rule is purely birth-death updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results indicating that continuous motion also suppresses natural selection.
Surveys of microbial biodiversity such as the Earth Microbiome Project (EMP) and the Human Microbiome Project (HMP) have revealed robust ecological patterns across different environments. A major goal in ecology is to leverage these patterns to ident ify the ecological processes shaping microbial ecosystems. One promising approach is to use minimal models that can relate mechanistic assumptions at the microbe scale to community-level patterns. Here, we demonstrate the utility of this approach by showing that the Microbial Consumer Resource Model (MiCRM) -- a minimal model for microbial communities with resource competition, metabolic crossfeeding and stochastic colonization -- can qualitatively reproduce patterns found in survey data including compositional gradients, dissimilarity/overlap correlations, richness/harshness correlations, and nestedness of community composition. By using the MiCRM to generate synthetic data with different environmental and taxonomical structure, we show that large scale patterns in the EMP can be reproduced by considering the energetic cost of surviving in harsh environments and HMP patterns may reflect the importance of environmental filtering in shaping competition. We also show that recently discovered dissimilarity-overlap correlations in the HMP likely arise from communities that share similar environments rather than reflecting universal dynamics. We identify ecologically meaningful changes in parameters that alter or destroy each one of these patterns, suggesting new mechanistic hypotheses for further investigation. These findings highlight the promise of minimal models for microbial ecology.
We show that the COVID-19 pandemic under social distancing exhibits universal dynamics. The cumulative numbers of both infections and deaths quickly cross over from exponential growth at early times to a longer period of power law growth, before even tually slowing. In agreement with a recent statistical forecasting model by the IHME, we show that this dynamics is well described by the erf function. Using this functional form, we perform a data collapse across countries and US states with very different population characteristics and social distancing policies, confirming the universal behavior of the COVID-19 outbreak. We show that the predictive power of statistical models is limited until a few days before curves flatten, forecast deaths and infections assuming current policies continue and compare our predictions to the IHME models. We present simulations showing this universal dynamics is consistent with disease transmission on scale-free networks and random networks with non-Markovian transmission dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا