ﻻ يوجد ملخص باللغة العربية
Measurement incompatibility is a distinguishing property of quantum physics and an essential resource for many quantum information processing tasks. We introduce an approach to verify the joint measurability of measurements based on phase-space quasiprobability distributions. Our results therefore establish a connection between two notions of non-classicality, namely the negativity of quasiprobability distributions and measurement incompatibility. We show how our approach can be applied to the study of incompatibility-breaking channels and derive incompatibility-breaking sufficient conditions for bosonic systems and Gaussian channels. In particular, these conditions provide useful tools for investigating the effects of errors and imperfections on the incompatibility of measurements in practice. To illustrate our method, we consider all classes of single-mode Gaussian channels. We show that pure lossy channels with 50% or more losses break the incompatibility of all measurements that can be represented by non-negative Wigner functions, which includes the set of Gaussian measurements.
Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. N
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual p
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
Quantum measurements can be interpreted as a generalisation of probability vectors, in which non-negative real numbers are replaced by positive semi-definite operators. We extrapolate this analogy to define a generalisation of doubly stochastic matri
This talk is a survey of the question of joint measurability of coexistent observables and its is based on the monograph Operational Quantum Physics [1] and on the papers [2,3,4].