ﻻ يوجد ملخص باللغة العربية
Subgraph isomorphism is a well-known NP-hard problem which is widely used in many applications, such as social network analysis and knowledge graph query. Its performance is often limited by the inherent hardness. Several insightful works have been done since 2012, mainly optimizing pruning rules and matching orders to accelerate enumerating all isomorphic subgraphs. Nevertheless, their correctness and performance are not well studied. First, different languages are used in implementation with different compilation flags. Second, experiments are not done on the same platform and the same datasets. Third, some ideas of different works are even complementary. Last but not least, there exist errors when applying some algorithms. In this paper, we address these problems by re-implementing seven representative subgraph isomorphism algorithms as well as their improv
Subgraph isomorphism is a well-known NP-hard problem that is widely used in many applications, such as social network analysis and query over the knowledge graph. Due to the inherent hardness, its performance is often a bottleneck in various real-wor
Given a graph $F$, let $I(F)$ be the class of graphs containing $F$ as an induced subgraph. Let $W[F]$ denote the minimum $k$ such that $I(F)$ is definable in $k$-variable first-order logic. The recognition problem of $I(F)$, known as Induced Subgrap
Let $v(F)$ denote the number of vertices in a fixed connected pattern graph $F$. We show an infinite family of patterns $F$ such that the existence of a subgraph isomorphic to $F$ is expressible by a first-order sentence of quantifier depth $frac23,v
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Descript
In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical