ﻻ يوجد ملخص باللغة العربية
We study the impact of rotation on the hydrodynamic evolution of convective vortices during stellar collapse. Using linear hydrodynamics equations, we study the evolution of the vortices from their initial radii in convective shells down to smaller radii where they are expected to encounter the supernova shock. We find that the evolution of vortices is mainly governed by two effects: the acceleration of infall and the accompanying speed up of rotation. The former effect leads to the radial stretching of vortices, which limits the vortex velocities. The latter effect leads to the angular deformation of vortices in the direction of rotation, amplifying their non-radial velocity. We show that the radial velocities of the vortices are not significantly affected by rotation. We study acoustic wave emission and find that it is not sensitive to rotation. Finally, we analyze the impact of the corotation point and find that it has a small impact on the overall acoustic wave emission.
The convection that takes place in the innermost shells of massive stars plays an important role in the formation of core-collapse supernova explosions. Upon encountering the supernova shock, additional turbulence is generated, amplifying the explosi
Turbulent friction in convective regions in stars and planets is one of the key physical mechanisms that drive the dissipation of the kinetic energy of tidal flows in their interiors and the evolution of their systems. This friction acts both on the
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a wi
Depending on mass and rotational frequency, gravity compresses the matter in the core regions of neutron stars to densities that are several times higher than the density of ordinary atomic nuclei. At such huge densities atoms themselves collapse, an
Atoms and molecules, and in particular CO, are important coolants during the evolution of interstellar star-forming gas clouds. The presence of dust grains, which allow many chemical reactions to occur on their surfaces, strongly impacts the chemical