ﻻ يوجد ملخص باللغة العربية
We use large-scale exact diagonalization to study the quantum Ising chain in a transverse field with long-range power-law interactions decaying with exponent $alpha$. We numerically study various probes for quantum chaos and eigenstate thermalization on the level of eigenvalues and eigenstates. The level-spacing statistics yields a clear sign towards a Wigner-Dyson distribution and therefore towards quantum chaos across all values of $alpha>0$. Yet, for $alpha<1$ we find that the microcanonical entropy is nonconvex (a mark for ensemble inequivalence). We argue that this apparent discrepancy is due to the fact that the spectrum is organized in energetically separated multiplets for $alpha<1$. While quantum chaotic behaviour develops within the individual multiplets, many multiplets dont overlap and dont mix with each other for finite system sizes $N$, as we analytically and numerically argue in the paper. Our findings suggest that a small fraction of the multiplets could persist at low energies for $alphall 1$ even for large $N$, giving rise there to ensemble inequivalence. Our findings are in sharp contrast with short-range systems where quantum chaos, eigenstate thermalization and convex microcanonical entropy are typically strictly related.
Using the framework of infinite Matrix Product States, the existence of an textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, ar
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. H
Using an infinite Matrix Product State (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy, initially detected in systems subject to nearest-neighbor Rydberg blockade, the so called PXP model. While most of these special eigenstates elude an analytical desc
The study of critical properties of systems with long-range interactions has attracted in the last decades a continuing interest and motivated the development of several analytical and numerical techniques, in particular in connection with spin model