ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermomagnetic Properties of QCD

66   0   0.0 ( 0 )
 نشر من قبل Christoph Peter Hofmann
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the low-energy regime of quantum chromodynamics subjected to an external magnetic field by deriving the two-loop representations for the entropy density and the magnetization within chiral perturbation theory (CHPT). At fixed temperature, the entropy density drops when the magnetic field becomes stronger. The magnetization induced at finite temperature is negative in the entire parameter region accessible by CHPT. We also point out that the enhancement of the finite-temperature part in the quark condensate is correlated with the decrease of the entropy density.



قيم البحث

اقرأ أيضاً

A new critical endpoint is pinned down in the thermomagnetic-QCD phase structure, which is suggested to be present between the two-flavor and three-flavor massless limits. It is signaled by the electromagnetic scale anomaly in QCD, and is shown to be most eminent in a weak magnetic field regime, which is not well explored on lattice QCD.
64 - L. Ya. Glozman 2019
While the QCD Lagrangian as the whole is only chirally symmetric, its electric part has larger chiral-spin SU(2)_{CS} and SU(2N_F) symmetries. This allows separation of the electric and magnetic interactions in a given reference frame. Artificial tru ncation of the near-zero modes of the Dirac operator results in the emergence of the SU(2)_{CS} and SU(2N_F) symmetries in hadron spectrum. This implies that while the confining electric interaction is distributed among all modes of the Dirac operator, the magnetic interaction is located at least predominantly in the near-zero modes. Given this observation one could anticipate that above the pseudocritical temperature, where the near-zero modes of the Dirac operator are suppressed, QCD is SU(2)_{CS} and SU(2N_F) symmetric, which means absence of deconfinement in this regime. Solution of the N_F=2 QCD on the lattice with a chirally symmetric Dirac operator reveals that indeed in the interval Tc - 3Tc QCD is approximately SU(2)_{CS} and SU(2N_F) symmetric which implies that degrees of freedom are chirally symmetric quarks bound by the chromoelectric field into color-singlet objects without the chromomagnetic effects. This regime is referred to as a Stringy Fluid. At larger temperatures this emergent symmetry smoothly disappears and QCD approaches the Quark-Gluon Plasma regime with quasifree quarks. The Hadron Gas, the Stringy Fluid and the Quark-Gluon Plasma differ by symmetries, degrees of freedom and properties.
92 - Kouji Kashiwa 2016
Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic quantities beside the Roberge-Weiss transition line. To incorporate several properties at finite imaginary chemical potential, it is important to introduce the holonomy effects to the coupling constant of effective models. This extension is possible by considering the entanglement vertex. We show justifications of the entanglement vertex based on the derivation of the effective four-fermi interaction in the Nambu--Jona-Lasinio model and present its general form with the local approximation. To discuss how to remove model ambiguities in the entanglement vertex, we calculate the chiral condensate with different $mathbb{Z}_3$ sectors and the dual quark condensate.
For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term of the gluo n propagator. The exact solutions of these equations exhibit poles at the origin, which are incompatible with the physical answer, known to diverge only logarithmically; their elimination hinges on the validity of two integral conditions that we denominate ``asymmetric and ``symmetric sum rules, depending on the kinematics employed in their derivation. The corresponding integrands contain components of the three-gluon vertex and the ghost-gluon kernel, whose dynamics are constrained when the sum rules are imposed. For the numerical treatment we single out the asymmetric sum rule, given that its support stems predominantly from low and intermediate energy regimes of the defining integral, which are physically more interesting. Adopting a combined approach based on Schwinger-Dyson equations and lattice simulations, we demonstrate how the sum rule clearly favors the suppression of an effective form factor entering in the definition of its kernel. The results of the present work offer an additional vantage point into the rich and complex structure of the three-point sector of QCD.
260 - Marco Frasca 2009
We prove a theorem in QCD stating that in the limit of strong coupling, $gtoinfty$, the observed spectrum of glueballs in QCD is the same of a pure Yang-Mills theory, being mixing effects due to the next-to-leading order. A full effective theory for QCD is obtained and the width of the $sigma$ resonance decay is straightforwardly computed. This appears as the lowest glueball state. Vacuum gluon condensate is computed that consistently support studies on the identification of this meson as a glueball.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا