ﻻ يوجد ملخص باللغة العربية
We explore the low-energy regime of quantum chromodynamics subjected to an external magnetic field by deriving the two-loop representations for the entropy density and the magnetization within chiral perturbation theory (CHPT). At fixed temperature, the entropy density drops when the magnetic field becomes stronger. The magnetization induced at finite temperature is negative in the entire parameter region accessible by CHPT. We also point out that the enhancement of the finite-temperature part in the quark condensate is correlated with the decrease of the entropy density.
A new critical endpoint is pinned down in the thermomagnetic-QCD phase structure, which is suggested to be present between the two-flavor and three-flavor massless limits. It is signaled by the electromagnetic scale anomaly in QCD, and is shown to be
While the QCD Lagrangian as the whole is only chirally symmetric, its electric part has larger chiral-spin SU(2)_{CS} and SU(2N_F) symmetries. This allows separation of the electric and magnetic interactions in a given reference frame. Artificial tru
Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic
For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term of the gluo
We prove a theorem in QCD stating that in the limit of strong coupling, $gtoinfty$, the observed spectrum of glueballs in QCD is the same of a pure Yang-Mills theory, being mixing effects due to the next-to-leading order. A full effective theory for