In this article, we prove a new general identity involving the Theta operators introduced by the first author and his collaborators in [DAdderio, Iraci, Vanden Wyngaerd 2020]. From this result, we can easily deduce several new identities that have combinatorial consequences in the study of Macdonald polynomials and diagonal coinvariants. In particular, we provide a unifying framework from which we recover many identities scattered in the literature, often resulting in drastically shorter proofs.