ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation/destruction of ultra-wide binaries in tidal streams

132   0   0.0 ( 0 )
 نشر من قبل Jorge Penarrubia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jorge Pe~narrubia




اسأل ChatGPT حول البحث

This paper uses statistical and $N$-body methods to explore a new mechanism to form binary stars with extremely large separations ($> 0.1,{rm pc}$), whose origin is poorly understood. Here, ultra-wide binaries arise via chance entrapment of unrelated stars in tidal streams of disrupting clusters. It is shown that (i) the formation of ultra-wide binaries is not limited to the lifetime of a cluster, but continues after the progenitor is fully disrupted, (ii) the formation rate is proportional to the local phase-space density of the tidal tails, (iii) the semimajor axis distribution scales as $p(a)d asim a^{1/2}d a$ at $all D$, where $D$ is the mean interstellar distance, and (vi) the eccentricity distribution is close to thermal, $p(e)d e= 2 e d e$. Owing to their low binding energies, ultra-wide binaries can be disrupted by both the smooth tidal field and passing substructures. The time-scale on which tidal fluctuations dominate over the mean field is inversely proportional to the local density of clumps. Monte-Carlo experiments show that binaries subject to tidal evaporation follow $p(a)d asim a^{-1}d a$ at $agtrsim a_{rm peak}$, known as Opiks law, with a peak semi-major axis that contracts with time as $a_{rm peak}sim t^{-3/4}$. In contrast, a smooth Galactic potential introduces a sharp truncation at the tidal radius, $p(a)sim 0$ at $agtrsim r_t$. The scaling relations of young clusters suggest that most ultra-wide binaries arise from the disruption of low-mass systems. Streams of globular clusters may be the birthplace of hundreds of ultra-wide binaries, making them ideal laboratories to probe clumpiness in the Galactic halo.



قيم البحث

اقرأ أيضاً

105 - Heidi Jo Newberg 2021
Dwarf galaxies that come too close to larger galaxies suffer tidal disruption; the differential gravitational force between one side of the galaxy and the other serves to rip the stars from the dwarf galaxy so that they instead orbit the larger galax y. This process produces tidal streams of stars, which can be found in the stellar halo of the Milky Way, as well as in halos of other galaxies. This chapter provides a general introduction to tidal streams, including the mechanism through which the streams are created, the history of how they were discovered, and the observational techniques by which they can be detected. In addition, their use in unraveling galaxy formation history and the distribution of dark matter in galaxies is discussed, as is the interaction between these dwarf galaxy satellites and the disk of the larger galaxy.
The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely-separated binaries. These systems are similar to other Trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH69, e=0.9) and the most widely-separated, weakly bound (2001 QW322, a/Rh~0.22) binary minor planets known, and also contains the system with lowest-measured mass of any TNB (2000 CF105, M~1.85E17 kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce a similar orbital distribution to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.
We identify 806 ultra-cool dwarfs from their SDSS riz photometry (of which 34 are newly discovered L dwarfs) and obtain proper motions through cross matching with UKIDSS and 2MASS. Proper motion and distance constraints show that nine of our ultra-co ol dwarfs are members of widely separated binary systems; SDSS 0101 (K5V+M9.5V), SDSS 0207 (M1.5V+L3V), SDSS 0832 (K3III+L3.5V), SDSS 0858 (M4V+L0V), SDSS 0953 (M4V+M9.5V), SDSS 0956 (M2V+M9V), SDSS 1304 (M4.5V+L0V), SDSS 1631 (M5.5V+M8V), SDSS 1638 (M4V+L0V). One of these (SDSS 0832) is shown to be a companion to the bright K3 giant Eta Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. Eta Cancri AB is the first wide ultra-cool dwarf + giant binary system identified. We present new observations and analysis that constrain the metallicity of Eta Cancri A to be near solar, and use recent evolutionary models to constrain the age of the giant to be 2.2-6.1 Gyr. If Eta Cancri B is a single object, we estimate its physical attributes to be; mass = 63-82 M_Jup, T_eff = 1800+/-150 K, log g = 5.3-5.5, [M/H] = 0.0+/-0.1. Its colours are non typical when compared to other ultra-cool dwarfs, and we also assess the possibility that Eta Cancri B is itself an unresolved binary, showing that the combined light of an L4 + T4 system could provide a reasonable explanation for its colours.
We report the discovery of a $>1^circ$ ($sim50$ kpc) long stellar tidal stream emanating from the dwarf galaxy DDO 44, a likely satellite of Local Volume galaxy NGC 2403 located $sim70$ kpc in projection from its companion. NGC 2403 is a roughly Larg e Magellanic Cloud stellar-mass galaxy 3 Mpc away, residing at the outer limits of the M 81 group. We are mapping a large region around NGC 2403 as part of our MADCASH (Magellanic Analogs Dwarf Companions and Stellar Halos) survey, reaching point source depths (90% completeness) of ($g, i$) = (26.5, 26.2). Density maps of old, metal-poor RGB stars reveal tidal streams extending on two sides of DDO 44, with the streams directed toward NGC 2403. We estimate total luminosities of the original DDO 44 system (dwarf and streams combined) to be $M_{i, rm{tot}} = -13.4$ and $M_{g, rm{tot}} = -12.6$, with $sim25-30%$ of the luminosity in the streams. Analogs of $sim$LMC-mass hosts with massive tidally disrupting satellites are rare in the Illustris simulations, especially at large separations such as that of DDO 44. The few analogs that are present in the models suggest that even low-mass hosts can efficiently quench their massive satellites.
We carry out controlled $N$-body simulations that follow the dynamical evolution of binary stars in the dark matter (DM) haloes of ultra-faint dwarf spheroidals (dSphs). We find that wide binaries with semi-major axes $agtrsim a_t$ tend to be quickly disrupted by the tidal field of the halo. In smooth potentials the truncation scale, $a_t$, is mainly governed by (i) the mass enclosed within the dwarf half-light radius ($R_h$) and (ii) the slope of the DM halo profile at $Rapprox R_h$, and is largely independent of the initial eccentricity distribution of the binary systems and the anisotropy of the stellar orbits about the galactic potential. For the reported velocity dispersion and half-light radius of Segue I, the closest ultra-faint, our models predict $a_t$ values that are a factor 2--3 smaller in cuspy haloes than in any of the cored models considered here. Using mock observations of Segue I we show that measuring the projected two-point correlation function of stellar pairs with sub-arcsecond resolution may provide a useful tool to constrain the amount and distribution of DM in the smallest and most DM-dominated galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا