ﻻ يوجد ملخص باللغة العربية
We perform a dedicated study of the $q bar{q}$-initiated two-loop electroweak-QCD Drell-Yan scattering amplitude in dimensional regularization schemes for vanishing light quark and lepton masses. For the relative order $alpha$ and $alpha_s$ one-loop Standard Model corrections, details of our comparison to the original literature are given. The infrared pole terms of the mixed two-loop amplitude are governed by a known generalization of the dipole formula and we show explicitly that exactly the same two-loop polarized hard scattering functions are obtained in both the standard t Hooft-Veltman-Breitenlohner-Maison $gamma_5$ scheme and Kreimers anticommuting $gamma_5$ scheme.
We compute the one-loop QCD amplitudes for the decay of an off-shell vector boson with vector couplings into a quark-antiquark pair accompanied by two gluons keeping, for the first time, all orders in the number of colours. Together with previous wor
We calculate the long-distance effect generated by the four-quark operators with $c$-quarks in the $Bto K^{(*)} ell^+ell^-$ decays. At the lepton-pair invariant masses far below the $bar{c}c$-threshold, $q^2ll 4m_c^2$, we use OPE near the light-cone.
In this talk we review the recent computation of the five- and six-gluon two-loop amplitudes in Yang-Mills theory using local integrands which make the infrared pole structure manifest. We make some remarks on the connection with BCJ relations and the all-multiplicity structure.
Measurements of electroweak precision observables at future electron-positron colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expe
A summary is presented of the most recent matrix elements for massless 2 to 2 scattering processes calculated at two loops in QCD perturbation theory together with a brief review on the calculational methods and techniques used.