ﻻ يوجد ملخص باللغة العربية
We introduce a novel covariance estimator that exploits the heteroscedastic nature of financial time series by employing exponential weighted moving averages and shrinking the in-sample eigenvalues through cross-validation. Our estimator is model-agnostic in that we make no assumptions on the distribution of the random entries of the matrix or structure of the covariance matrix. Additionally, we show how Random Matrix Theory can provide guidance for automatic tuning of the hyperparameter which characterizes the time scale for the dynamics of the estimator. By attenuating the noise from both the cross-sectional and time-series dimensions, we empirically demonstrate the superiority of our estimator over competing estimators that are based on exponentially-weighted and uniformly-weighted covariance matrices.
Designing a covariance function that represents the underlying correlation is a crucial step in modeling complex natural systems, such as climate models. Geospatial datasets at a global scale usually suffer from non-stationarity and non-uniformly smo
In many applications, we have access to the complete dataset but are only interested in the prediction of a particular region of predictor variables. A standard approach is to find the globally best modeling method from a set of candidate methods. Ho
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB ca
Cross-validation (CV) is a technique for evaluating the ability of statistical models/learning systems based on a given data set. Despite its wide applicability, the rather heavy computational cost can prevent its use as the system size grows. To res
This paper proposes a novel non-oscillatory pattern (NOP) learning scheme for several oscillatory data analysis problems including signal decomposition, super-resolution, and signal sub-sampling. To the best of our knowledge, the proposed NOP is the