ترغب بنشر مسار تعليمي؟ اضغط هنا

BaOsO$_3$: A Hunds metal in the presence of strong spin-orbit coupling

116   0   0.0 ( 0 )
 نشر من قبل Max Bramberger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the 5d transition metal oxide BaOsO$_3$ within a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT), using a matrix-product-state impurity solver. BaOsO$_3$ has 4 electrons in the t$_{2g}$ shell akin to ruthenates but stronger spin-orbit coupling (SOC) and is thus expected to reveal an interplay of Hunds metal behavior with SOC. We explore the paramagnetic phase diagram as a function of SOC and Hubbard interaction strengths, identifying metallic, band (van-Vleck) insulating and Mott insulating regions. At the physical values of the two couplings we find that BaOsO$_3$ is still situated inside the metallic region and has a moderate quasiparticle renormalization $m^*/m approx 2$; consistent with specific heat measurements. SOC plays an important role in suppressing electronic correlations (found in the vanishing SOC case) through the splitting of a van-Hove singularity (vHs) close to the Fermi energy, but is insufficient to push the material into an insulating van-Vleck regime. In spite of the strong effect of SOC, BaOsO$_3$ can be best pictured as a moderately correlated Hunds metal.



قيم البحث

اقرأ أيضاً

We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamilt onian in the strong-interaction limit. Applying this theory to a minimal model of $alpha$-RuCl$_{3}$, we show that the magnitudes and signs of three exchange interactions, $J$, $K$, and $Gamma$, can be changed simultaneously. Then, considering another case in which one of the hopping integrals has a different value and the other parameters are the same as those for $alpha$-RuCl$_{3}$, we show that the Heisenberg interaction $J$ can be made much smaller than the anisotropic exchange interactions $K$ and $Gamma$.
Sr$_{3}$ZnIrO$_{6}$ is an effective spin one-half Mott insulating iridate belonging to a family of magnets which includes a number of quasi-one dimensional systems as well as materials exhibiting three dimensional order. Here we present the results o f an extensive investigation into the magnetism including heat capacity, a.c. susceptibility, muon spin rotation ($mu$SR), neutron diffraction and inelastic neutron scattering on the same sample. It is established that the material exhibits a transition at about $17$ K into a three-dimensional antiferromagnetic structure with propagation vector $boldsymbol{k}=(0,frac{1}{2},1)$ in the hexagonal setting of R$bar{3}$c and non-collinear moments of $0.87$$mu_B$ on Ir$^{4+}$ ions. Further we have observed a well defined powder averaged spin wave spectrum with zone boundary energy of $sim 5$ meV at $5$ K. We stress that a theoretical analysis shows that the observed non-collinear magnetic structure arises from anisotropic inter- and intra- chain exchange which has its origin in significant spin-orbit coupling. The model can satisfactorily explain the observed spin wave excitations.
We investigate the electronic structure of a perovskite-type Pauli paramagnet SrMoO3 (t2g2) thin film using hard x-ray photoemission spectroscopy and compare the results to the realistic calculations that combine the density functional theory within the local-density approximation (LDA) with the dynamical-mean field theory (DMFT). Despite the clear signature of electron correlations in the electronic specific heat, the narrowing of the quasiparticle bands is not observed in the photoemission spectrum. This is explained in terms of the characteristic effect of Hunds rule coupling for partially-filled t2g bands, which induces strong quasiparticle renormalization already for values of Hubbard interaction which are smaller than the bandwidth. The interpretation is supported by additional model DMFT calculations including Hunds rule coupling, that show renormalization of low-energy quasiparticles without affecting the overall bandwidth. The photoemission spectra show additional spectral weight around -2 eV that is not present in the LDA+DMFT. We interpret this weight as a plasmon satellite, which is supported by measured Mo, Sr and Oxygen core-hole spectra that all show satellites at this energy.
We use Ru $L_3$-edge (2838.5 eV) resonant inelastic x-ray scattering (RIXS) to quantify the electronic structure of Ca$_2$RuO$_4$, a layered $4d$-electron compound that exhibits a correlation-driven metal-insulator transition and unconventional antif erromagnetism. We observe a series of Ru intra-ionic transitions whose energies and intensities are well described by model calculations. In particular, we find a $rm{J}=0rightarrow 2$ spin-orbit excitation at 320 meV, as well as Hunds-rule driven $rm{S}=1rightarrow 0$ spin-state transitions at 750 and 1000 meV. The energy of these three features uniquely determines the spin-orbit coupling, tetragonal crystal-field energy, and Hunds rule interaction. The parameters inferred from the RIXS spectra are in excellent agreement with the picture of excitonic magnetism that has been devised to explain the collective modes of the antiferromagnetic state. $L_3$-edge RIXS of Ru compounds and other $4d$-electron materials thus enables direct measurements of interactions parameters that are essential for realistic model calculations.
We investigated the magnetotransport properties of mesoscopic platinum nanostructures (wires and rings) with sub-100 nm lateral dimensions at very low temperatures. Despite the strong spin-orbit interaction in platinum, oscillations of the conductanc e as a function of the external magnetic field due to quantum interference effects was found to appear. The oscillation was decomposed into Aharonov-Bohm periodic oscillations and aperiodic fluctuations of the conductance due to a magnetic flux piercing the loop of the ring and the metal wires forming the nanostructures, respectively. We also investigated the magnetotransport under different bias currents to explore the interplay between electron phase coherence and spin accumulation effects in strong spin-orbit conductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا