ترغب بنشر مسار تعليمي؟ اضغط هنا

Assimilation of the SCATSAR-SWI with SURFEX: Impact of local observation errors in Austria

48   0   0.0 ( 0 )
 نشر من قبل Jasmin Vural
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The proper determination of soil moisture on different scales is important for applications in a variety of fields. We aim to develop a high-level soil moisture product with high temporal and spatial resolution by assimilating the multilayer soil moisture product SCATSAR-SWI (Scatterometer Synthetic Aperture Radar Soil Water Index) into the surface model SURFEX. In addition, we probe the impact of the findings on the Numerical Weather Prediction (NWP) in Austria. The data assimilation system consists of the NWP model AROME and the SURFEX Offline Data Assimilation, which provide atmospheric forcing and soil moisture fields as mutual input. To address the known sensitivity of the employed simplified Extended Kalman Filter to the specification of errors, we compute the observation error variances of the SCATSAR-SWI locally using Triple Collocation Analysis and implement them into the assimilation system. The verification of the forecasted 2 m temperature and relative humidity against measurements of Austrian weather stations shows that the actual impact of the local error approach on the atmospheric forecast is slightly positive to neutral compared to the standard error approach, depending on the time of the year. The direct verification of the soil moisture analysis against a gridded water balance product reveals a degradation of the unbiased root mean square error for small observation errors.



قيم البحث

اقرأ أيضاً

A formulation is developed to assimilate ocean-wave data into the Numerical Flow Analysis (NFA) code. NFA is a Cartesian-based implicit Large-Eddy Simulation (LES) code with Volume of Fluid (VOF) interface capturing. The sequential assimilation of da ta into NFA permits detailed analysis of ocean-wave physics with higher bandwidths than is possible using either other formulations, such as High-Order Spectral (HOS) methods, or field measurements. A framework is provided for assimilating the wavy and vortical portions of the flow. Nudging is used to assimilate wave data at low wavenumbers, and the wave data at high wavenumbers form naturally through nonlinear interactions, wave breaking, and wind forcing. Similarly, the vertical profiles of the mean vortical flow in the wind and the wind drift are nudged, and the turbulent fluctuations are allowed to form naturally. As a demonstration, the results of a HOS of a JONSWAP wave spectrum are assimilated to study short-crested seas in equilibrium with the wind. Log profiles are assimilated for the mean wind and the mean wind drift. The results of the data assimilations are (1) Windrows form under the action of breaking waves and the formation of swirling jets; (2) The crosswind and cross drift meander; (3) Swirling jets are organized into Langmuir cells in the upper oceanic boundary layer; (4) Swirling jets are organized into wind streaks in the lower atmospheric boundary layer; (5) The length and time scales of the Langmuir cells and the wind streaks increase away from the free surface; (6) Wave growth is very dynamic especially for breaking waves; (7) The effects of the turbulent fluctuations in the upper ocean on wave growth need to be considered together with the turbulent fluctuations in the lower atmosphere; and (8) Extreme events are most likely when waves are not in equilibrium.
We study the relationship between the El Ni~no--Southern Oscillation (ENSO) and the Indian summer monsoon in ensemble simulations from state-of-the-art climate models, the Max Planck Institute Earth System Model (MPI-ESM) and the Community Earth Syst em Model (CESM). We consider two simple variables: the Tahiti--Darwin sea-level pressure difference and the Northern Indian precipitation. We utilize ensembles converged to the systems snapshot attractor for analyzing possible changes (i) in the teleconnection between the fluctuations of the two variables, and (ii) in their climatic means. (i) With very high confidence, we detect an increase in the strength of the teleconnection, as a response to the forcing, in the MPI-ESM under historical forcing between 1890 and 2005, concentrated to the end of this period. We explain that our finding does not contradict instrumental observations, since their existing analyses regarding the nonstationarity of the teleconnection are either methodologically unreliable, or consider an ill-defined teleconnection concept. In the MPI-ESM we cannot reject stationarity between 2006 and 2099 under the Representative Concentration Pathway 8.5 (RCP8.5), and in a 110-year-long 1-percent pure CO2 scenario; neither can we in the CESM between 1960 and 2100 with historical forcing and RCP8.5. (ii) In the latter ensembles, the climatic mean is strongly displaced in the phase space projection spanned by the two variables. This displacement is nevertheless linear. However, the slope exhibits a strong seasonality, falsifying a hypothesis of a universal, emergent relationship between these two climatic means, excluding applicability in an emergent constraint.
68 - Pascal Marquet 2019
This article describes the third law of thermodynamics. This law is often poorly known and is often decried, or even considered optional and irrelevant to describe weather and climate phenomena. This, however, is inaccurate and contrary to scientific facts. A rather exhaustive historical study is proposed here in order to better understand, in another article to come, why the third principle can be interesting for the atmosphere sciences.
High temporal resolution in--situ measurements of pancake ice drift are presented, from a pair of buoys deployed on floes in the Antarctic marginal ice zone during the winter sea ice expansion, over nine days in which the region was impacted by four polar cyclones. Concomitant measurements of wave-in-ice activity from the buoys is used to infer that pancake ice conditions were maintained over at least the first seven days. Analysis of the data shows: (i)~unprecedentedly fast drift speeds in the Southern Ocean; (ii)~high correlation of drift velocities with the surface wind velocities, indicating absence of internal ice stresses $>$100,km in from the edge in 100% remotely sensed ice concentration; and (iii)~presence of a strong inertial signature with a 13,h period. A Langrangian free drift model is developed, including a term for geostrophic currents that reproduces the 13,h period signature in the ice motion. The calibrated model is shown to provide accurate predictions of the ice drift for up to 2,days, and the calibrated parameters provide estimates of wind and ocean drag for pancake floes under storm conditions.
137 - Eugene Kazantsev 2008
The use of data assimilation technique to identify optimal topography is discussed in frames of time-dependent motion governed by non-linear barotropic ocean model. Assimilation of artificially generated data allows to measure the influence of variou s error sources and to classify the impact of noise that is present in observational data and model parameters. The choice of assimilation window is discussed. Assimilating noisy data with longer windows provides higher accuracy of identified topography. The topography identified once by data assimilation can be successfully used for other model runs that start from other initial conditions and are situated in other parts of the models attractor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا