ﻻ يوجد ملخص باللغة العربية
In this paper, we present an efficient, accurate and fully Lagrangian numerical solver for modeling wave interaction with oscillating wave energy converter (OWSC). The key idea is to couple SPHinXsys, an open-source multi-physics library in unified smoothed particle hydrodynamic (SPH) framework, with Simbody which presents an object-oriented Application Programming Interface (API) for multi-body dynamics. More precisely, the wave dynamics and its interaction with OWSC is resolved by Riemann-based weakly-compressible SPH method using SPHinXsys, and the solid-body kinematics is computed by Simbody library. Numerical experiments demonstrate that the proposed solver can accurately predict the wave elevations, flap rotation and wave loading on the flap in comparison with laboratory experiment. In particularly, the new solver shows optimized computational performance through CPU cost analysis and comparison with commercial software package ANSYS FLUENT and other SPH-based solvers in literature. Furthermore, a linear damper is applied for imitating the power take-off (PTO) system to study its effects on the hydrodynamics properties of OWSC and efficiency of energy harvesting. In addition, the present solver is used to model extreme wave condition using the focused wave approach to investigate the extreme loads and motions of OWSC under such extreme wave conditions. It worth noting that though the model validation used herein is a bottom hinged oscillating Wave Energy Converter (WEC), the obtained numerical results show promising potential of the proposed solver to future applications in the design of high-performance WECs.
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa
Can a classical system as walking oil droplets on a vibrating surface simulate the single and double slit Quantum Mechanics experiment? A systematic investigation reveals that the answer is no, but that the classical system exhibits rich and fascinating structures.
The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as oppo
A computationally efficient model is introduced to account for the sub-grid scale velocities of tracer particles dispersed in statistically homogeneous and isotropic turbulent flows. The model embeds the multi-scale nature of turbulent temporal and s
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat