ﻻ يوجد ملخص باللغة العربية
Let $(a_k)_{kinmathbb N}$ be a sequence of integers satisfying the Hadamard gap condition $a_{k+1}/a_k>q>1$ for all $kinmathbb N$, and let $$ S_n(omega) = sum_{k=1}^ncos(2pi a_k omega),qquad ninmathbb N,;omegain [0,1]. $$ The lacunary trigonometric sum $S_n$ is known to exhibit several properties typical for sums of independent random variables. In this paper we initiate the investigation of large deviation principles (LDPs) for $S_n$. Under the large gap condition $a_{k+1}/a_ktoinfty$, we prove that $(S_n/n)_{ninmathbb N}$ satisfies an LDP with speed $n$ and the same rate function $tilde{I}$ as for sums of independent random variables with the arcsine distribution, but show that the LDP may fail to hold when we only assume the Hadamard gap condition. However, we prove that in the special case $a_k=q^k$ for some $qin {2,3,ldots}$, $(S_n/n)_{ninmathbb N}$ satisfies an LDP with speed $n$ and a rate function $I_q$ different from $tilde{I}$. We also show that $I_q$ converges pointwise to $tilde I$ as $qtoinfty$ and construct a random perturbation $(a_k)_{kinmathbb N}$ of the sequence $(2^k)_{kinmathbb N}$ for which $a_{k+1}/a_kto 2$ as $ktoinfty$, but for which $(S_n/n)_{ninmathbb N}$ satisfies an LDP with the rate function $tilde{I}$ as in the independent case and not, as one might na{i}vely expect, with rate function $I_2$. We relate this fact to the number of solutions of certain Diophantine equations. Our results show that LDPs for lacunary trigonometric sums are sensitive to the arithmetic properties of $(a_k)_{kinmathbb N}$. This is particularly noteworthy since no such arithmetic effects are visible in the central limit theorem by Salem and Zygmund or in the law of the iterated logarithm by Erdos and Gal. Our proofs use a combination of tools from probability theory, harmonic analysis, and dynamical systems.
The aim of this paper is to prove a Large Deviation Principle (LDP) for cumulative processes also known as coumpound renewal processes. These processes cumulate independent random variables occuring in time interval given by a renewal process. Our re
In this article, we develop a framework to study the large deviation principle for matrix models and their quantiz
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
Let $M_{l,n}$ be the number of blocks with frequency $l$ in the exchangeable random partition induced by a sample of size $n$ from the Ewens-Pitman sampling model. We show that, as $n$ tends to infinity, $n^{-1}M_{l,n}$ satisfies a large deviation pr
Borgs, Chayes, Gaudio, Petti and Sen [arXiv:2007.14508] proved a large deviation principle for block model random graphs with rational block ratios. We strengthen their result by allowing any block ratios (and also establish a simpler formula for the