ترغب بنشر مسار تعليمي؟ اضغط هنا

Positional Encoding as Spatial Inductive Bias in GANs

115   0   0.0 ( 0 )
 نشر من قبل Rui Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

SinGAN shows impressive capability in learning internal patch distribution despite its limited effective receptive field. We are interested in knowing how such a translation-invariant convolutional generator could capture the global structure with just a spatially i.i.d. input. In this work, taking SinGAN and StyleGAN2 as examples, we show that such capability, to a large extent, is brought by the implicit positional encoding when using zero padding in the generators. Such positional encoding is indispensable for generating images with high fidelity. The same phenomenon is observed in other generative architectures such as DCGAN and PGGAN. We further show that zero padding leads to an unbalanced spatial bias with a vague relation between locations. To offer a better spatial inductive bias, we investigate alternative positional encodings and analyze their effects. Based on a more flexible positional encoding explicitly, we propose a new multi-scale training strategy and demonstrate its effectiveness in the state-of-the-art unconditional generator StyleGAN2. Besides, the explicit spatial inductive bias substantially improve SinGAN for more versatile image manipulation.



قيم البحث

اقرأ أيضاً

125 - Yang Li , Si Si , Gang Li 2021
Attentional mechanisms are order-invariant. Positional encoding is a crucial component to allow attention-based deep model architectures such as Transformer to address sequences or images where the position of information matters. In this paper, we p ropose a novel positional encoding method based on learnable Fourier features. Instead of hard-coding each position as a token or a vector, we represent each position, which can be multi-dimensional, as a trainable encoding based on learnable Fourier feature mapping, modulated with a multi-layer perceptron. The representation is particularly advantageous for a spatial multi-dimensional position, e.g., pixel positions on an image, where $L_2$ distances or more complex positional relationships need to be captured. Our experiments based on several public benchmark tasks show that our learnable Fourier feature representation for multi-dimensional positional encoding outperforms existing methods by both improving the accuracy and allowing faster convergence.
It is well noted that coordinate based MLPs benefit greatly -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these p ositional encodings has been solely studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice. Codes available at https://github.com/osiriszjq/Rethinking-positional-encoding.
Transformers recently are adapted from the community of natural language processing as a promising substitute of convolution-based neural networks for visual learning tasks. However, its supremacy degenerates given an insufficient amount of training data (e.g., ImageNet). To make it into practical utility, we propose a novel distillation-based method to train vision transformers. Unlike previous works, where merely heavy convolution-based teachers are provided, we introduce lightweight teachers with different architectural inductive biases (e.g., convolution and involution) to co-advise the student transformer. The key is that teachers with different inductive biases attain different knowledge despite that they are trained on the same dataset, and such different knowledge compounds and boosts the students performance during distillation. Equipped with this cross inductive bias distillation method, our vision transformers (termed as CivT) outperform all previous transformers of the same architecture on ImageNet.
Borrowing from the transformer models that revolutionized the field of natural language processing, self-supervised feature learning for visual tasks has also seen state-of-the-art success using these extremely deep, isotropic networks. However, the typical AI researcher does not have the resources to evaluate, let alone train, a model with several billion parameters and quadratic self-attention activations. To facilitate further research, it is necessary to understand the features of these huge transformer models that can be adequately studied by the typical researcher. One interesting characteristic of these transformer models is that they remove most of the inductive biases present in classical convolutional networks. In this work, we analyze the effect of these and more inductive biases on small to moderately-sized isotropic networks used for unsupervised visual feature learning and show that their removal is not always ideal.
Multilayer perceptrons (MLPs) have been successfully used to represent 3D shapes implicitly and compactly, by mapping 3D coordinates to the corresponding signed distance values or occupancy values. In this paper, we propose a novel positional encodin g scheme, called Spline Positional Encoding, to map the input coordinates to a high dimensional space before passing them to MLPs, for helping to recover 3D signed distance fields with fine-scale geometric details from unorganized 3D point clouds. We verified the superiority of our approach over other positional encoding schemes on tasks of 3D shape reconstruction from input point clouds and shape space learning. The efficacy of our approach extended to image reconstruction is also demonstrated and evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا