ﻻ يوجد ملخص باللغة العربية
Texts appearing in daily scenes that can be recognized by OCR (Optical Character Recognition) tools contain significant information, such as street name, product brand and prices. Two tasks -- text-based visual question answering and text-based image captioning, with a text extension from existing vision-language applications, are catching on rapidly. To address these problems, many sophisticated multi-modality encoding frameworks (such as heterogeneous graph structure) are being used. In this paper, we argue that a simple attention mechanism can do the same or even better job without any bells and whistles. Under this mechanism, we simply split OCR token features into separate visual- and linguistic-attention branches, and send them to a popular Transformer decoder to generate answers or captions. Surprisingly, we find this simple baseline model is rather strong -- it consistently outperforms state-of-the-art (SOTA) models on two popular benchmarks, TextVQA and all three tasks of ST-VQA, although these SOTA models use far more complex encoding mechanisms. Transferring it to text-based image captioning, we also surpass the TextCaps Challenge 2020 winner. We wish this work to set the new baseline for this two OCR text related applications and to inspire new thinking of multi-modality encoder design. Code is available at https://github.com/ZephyrZhuQi/ssbaseline
In this paper, we tackle a fully unsupervised super-resolution problem, i.e., neither paired images nor ground truth HR images. We assume that low resolution (LR) images are relatively easy to collect compared to high resolution (HR) images. By allow
This paper studies the problem of StyleGAN inversion, which plays an essential role in enabling the pretrained StyleGAN to be used for real facial image editing tasks. This problem has the high demand for quality and efficiency. Existing optimization
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast infe
Recently, significant progress has been made on semantic segmentation. However, the success of supervised semantic segmentation typically relies on a large amount of labelled data, which is time-consuming and costly to obtain. Inspired by the success
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it