ﻻ يوجد ملخص باللغة العربية
End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable time. This work evaluates the accuracy and computation cost of interpolation and emulation methods to sample the input LUT variable space. The results on MONDTRAN-based top-of-atmosphere radiance data show that Gaussian Process emulators produced more accurate output spectra than linear interpolation at a fraction of its time. It is concluded that emulation can function as a fast and more accurate alternative to interpolation for LUT parameter space sampling.
An accurate seizure prediction system enables early warnings before seizure onset of epileptic patients. It is extremely important for drug-refractory patients. Conventional seizure prediction works usually rely on features extracted from Electroence
An end-to-end learning approach is proposed for the joint design of transmitted waveform and detector in a radar system. Detector and transmitted waveform are trained alternately: For a fixed transmitted waveform, the detector is trained using superv
Recently, deep learning is considered to optimize the end-to-end performance of digital communication systems. The promise of learning a digital communication scheme from data is attractive, since this makes the scheme adaptable and precisely tunable
We propose an autoencoder-based geometric shaping that learns a constellation robust to SNR and laser linewidth estimation errors. This constellation maintains shaping gain in mutual information (up to 0.3 bits/symbol) with respect to QAM over various SNR and laser linewidth values.
The problem of data-driven joint design of transmitted waveform and detector in a radar system is addressed in this paper. We propose two novel learning-based approaches to waveform and detector design based on end-to-end training of the radar system