ترغب بنشر مسار تعليمي؟ اضغط هنا

Likelihood Equations and Scattering Amplitudes

191   0   0.0 ( 0 )
 نشر من قبل Bernd Sturmfels
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We relate scattering amplitudes in particle physics to maximum likelihood estimation for discrete models in algebraic statistics. The scattering potential plays the role of the log-likelihood function, and its critical points are solutions to rational function equations. We study the ML degree of low-rank tensor models in statistics, and we revisit physical theories proposed by Arkani-Hamed, Cachazo and their collaborators. Recent advances in numerical algebraic geometry are employed to compute and certify critical points. We also discuss positive models and how to compute their string amplitudes.



قيم البحث

اقرأ أيضاً

Computing all critical points of a monomial on a very affine variety is a fundamental task in algebraic statistics, particle physics and other fields. The number of critical points is known as the maximum likelihood (ML) degree. When the variety is s mooth, it coincides with the Euler characteristic. We introduce degeneration techniques that are inspired by the soft limits in CEGM theory, and we answer several questions raised in the physics literature. These pertain to bounded regions in discriminantal arrangements and to moduli spaces of point configurations. We present theory and practise, connecting complex geometry, tropical combinatorics, and numerical nonlinear algebra.
61 - Carlos R. Mafra 2020
These notes are a written version of my talk given at the CARMA workshop in June 2017, with some additional material. I presented a few concepts that have recently been used in the computation of tree-level scattering amplitudes (mostly using pure sp inor methods but not restricted to it) in a context that could be of interest to the combinatorics community. In particular, I focused on the appearance of {it planar binary trees} in scattering amplitudes and presented some curious identities obeyed by related objects, some of which are known to be true only via explicit examples.
Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these function s up to two loops in the planar case, where we classify and identify the minimal set of basis functions. They are computed from the canonical form of their differential equations and expressed in terms of generalized polylogarithms, or alternatively as one-dimensional integrals. We present analytical expressions and numerical evaluation routines for these pentagon functions, in all kinematical configurations relevant to five-particle scattering processes.
In this talk, we review our recent work on direct evaluation of tree-level MHV amplitudes by Cachazo-He-Yuan (CHY) formula. We also investigate the correspondence between solutions to scattering equations and amplitudes in four dimensions along this line. By substituting the MHV solution of scattering equations into the integrated CHY formula, we explicitly calculate the tree-level MHV amplitudes for four dimensional Yang-Mills theory and gravity. These results naturally reproduce the Parke-Taylor and Hodges formulas. In addition, we derive a new compact formula for tree-level single-trace MHV amplitudes in Einstein-Yang-Mills theory, which is equivalent to the known Selivanov-Bern-De Freitas-Wong (SBDW) formula. Other solutions do not contribute to the MHV amplitudes in Yang-Mills theory, gravity and Einstein-Yang-Mills theory. We further investigate the correspondence between solutions of scattering equation and helicity configurations beyond MHV and proposed a method for characterizing solutions of scattering equations.
75 - Vittorio Del Duca 2017
We analyse the high-energy limit of the gluon-gluon scattering amplitude in QCD, and display an intriguing relation between the finite parts of the one-loop gluon impact factor and the finite parts of the two-loop Regge trajectory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا