ﻻ يوجد ملخص باللغة العربية
We discuss the effects of rotation on confining properties of gauge theories focusing on compact electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation axis. A uniformly rotating confining system possesses, in addition to the usual confinement and deconfinement phases, a mixed inhomogeneous phase which hosts spatially separated confinement and deconfinement regions. The phase diagram thus has two different deconfining temperatures. The first deconfining temperature can be made arbitrarily low by sufficiently rapid rotation while the second deconfining temperature is largely unaffected by the rotation. Implications of our results for the phase diagram of QCD are presented. We point out that uniformly rotating quark-gluon plasma should therefore experience an inverse hadronization effect when the hadronization starts from the core of the rotating plasma rather than from its boundary.
The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in w
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decompositi
We present a lattice study of the phase transitions at zero and nonzero temperature for the $SU(3)$ gauge theory with a varying number of flavours $N_f$ in the fundamental representation of the gauge group. We show that all results are consistent wit
While it is known that the QCD vacuum in a magnetic background exhibits both diamagnetic and paramagnetic characteristics in the low-energy domain, a systematic investigation of the corresponding phases emerging in the pion-dominated regime is still
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin