ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous confining-deconfining phases in rotating plasmas

75   0   0.0 ( 0 )
 نشر من قبل Maxim Chernodub
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف M. N. Chernodub




اسأل ChatGPT حول البحث

We discuss the effects of rotation on confining properties of gauge theories focusing on compact electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation axis. A uniformly rotating confining system possesses, in addition to the usual confinement and deconfinement phases, a mixed inhomogeneous phase which hosts spatially separated confinement and deconfinement regions. The phase diagram thus has two different deconfining temperatures. The first deconfining temperature can be made arbitrarily low by sufficiently rapid rotation while the second deconfining temperature is largely unaffected by the rotation. Implications of our results for the phase diagram of QCD are presented. We point out that uniformly rotating quark-gluon plasma should therefore experience an inverse hadronization effect when the hadronization starts from the core of the rotating plasma rather than from its boundary.



قيم البحث

اقرأ أيضاً

The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in w hich there is a stable vortex configuration of vector and scalar mesons. We numerically examine whether such a string can be interpreted as the confining string. By using meson masses and couplings as inputs, we calculate the tension of the string as well as the strength of the Coulomb force between static quarks. They are found to be consistent with those inferred from the quarkonium spectrum and the Regge trajectories of hadrons. By using the same Lagrangian, the critical temperature of the QCD phase transition is estimated, and a non-trivial flavor dependence is predicted. We also discuss a possible connection between the Seiberg duality and the magnetic model we studied.
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decompositi on followed by relaxation, to those obtained via Markov Chain Monte Carlo techniques in SU(3) lattice gauge theory. We find that the time when the structure factor peaks diverges like $sim 1/k^2$ in the long-wavelength limit. This is due to formation of competing Z(3) domains for configurations where the Polyakov loop exhibits non-perturbatively large variations in space, which delay thermalization of long wavelength modes. For realistic temperatures, and away from the extreme weak-coupling limit, we find that even modes with $k$ on the order of $T$ experience delayed thermalization. Relaxation times of very long wavelength modes are found to be on the order of the size of the system; thus, the dynamics of competing domains should accompany the hydrodynamic description of the deconfined vacuum.
We present a lattice study of the phase transitions at zero and nonzero temperature for the $SU(3)$ gauge theory with a varying number of flavours $N_f$ in the fundamental representation of the gauge group. We show that all results are consistent wit h a lower edge of the conformal window between $N_f=8$ and $N_f=6$. A lower edge in this interval is in remarkable agreement with perturbation theory and recent large-$N$ arguments. .
While it is known that the QCD vacuum in a magnetic background exhibits both diamagnetic and paramagnetic characteristics in the low-energy domain, a systematic investigation of the corresponding phases emerging in the pion-dominated regime is still lacking. Here, within two-flavor chiral perturbation theory, taking into account the pion-pion interaction, we analyze the subtle interplay between zero- and finite-temperature portions in the magnetization and magnetic susceptibility. The dependence of the magnetic susceptibility on temperature and magnetic field strength in the paramagnetic and diamagnetic phase is non-monotonic. Our low-energy analysis complements lattice QCD that is currently operating at higher temperatures and stronger magnetic fields.
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin equation. To fix completely the markovian Langevin dynamics we choose the dissipation coefficient, that is a function of the temperature, guided by preliminary Monte Carlo simulations for various temperatures. Assuming a relationship between Monte Carlo time and real time, we estimate the delay in thermalization brought about by dissipation and noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا