ﻻ يوجد ملخص باللغة العربية
We study solutions to $Lu=f$ in $Omegasubsetmathbb R^n$, being $L$ the generator of any, possibly non-symmetric, stable Levy process. On the one hand, we study the regularity of solutions to $Lu=f$ in $Omega$, $u=0$ in $Omega^c$, in $C^{1,alpha}$ domains~$Omega$. We show that solutions $u$ satisfy $u/d^gammain C^{varepsilon_circ}big(overlineOmegabig)$, where $d$ is the distance to $partialOmega$, and $gamma=gamma(L, u)$ is an explicit exponent that depends on the Fourier symbol of operator $L$ and on the unit normal $ u$ to the boundary $partialOmega$. On the other hand, we establish new integration by parts identities in half spaces for such operators. These new identities extend previous ones for the fractional Laplacian, but the non-symmetric setting presents some new interesting features. Finally, we generalize the integration by parts identities in half spaces to the case of bounded $C^{1,alpha}$ domains. We do it via a new efficient approximation argument, which exploits the Holder regularity of $u/d^gamma$. This new approximation argument is interesting, we believe, even in the case of the fractional Laplacian.
We consider a class of fully nonlinear integro-differential operators where the nonlocal integral has two components: the non-degenerate one corresponds to the $alpha$-stable operator and the second one (possibly degenerate) corresponds to a class of
In this paper, we study the problem of shock reflection by a wedge, with the potential flow equation, which is a simplification of the Euler System. In the work of M. Feldman and G. Chen, the existence theory of shock reflection problems with the p
Scattering amplitudes computed at a fixed loop order, along with any other object computed in perturbative quantum field theory, can be expressed as a linear combination of a finite basis of loop integrals. To compute loop amplitudes in practice, suc
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims tradit
In this paper we characterize global regularity in the sense of Shubin of twisted partial differential operators of second order in dimension $2$. These operators form a class containing the twisted Laplacian, and in bi-unique correspondence with sec