ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALMaQUEST Survey: VI. The molecular gas main sequence of `retired regions in galaxies

92   0   0.0 ( 0 )
 نشر من قبل Sara L. Ellison
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to investigate the role of gas in the demise of star formation on kpc-scales, we compare the resolved molecular gas main sequence (rMGMS: Sigma_* vs Sigma_H2) of star-forming regions to the sequence of `retired regions that have ceased to form new stars. Using data from the ALMaQUEST survey, we find that retired spaxels form a rMGMS that is distinct from that of star-forming spaxels, offset to lower Sigma_H2 at fixed Sigma_* by a factor of ~5. We study the rMGMS of star-forming and retired spaxels on a galaxy-by-galaxy basis for eight individual ALMaQUEST galaxies. Six of these galaxies have their retired spaxels concentrated within the central few kpc. Molecular gas is detected in 40-100% of retired spaxels in the eight galaxies in our sample. Both the star-forming and retired rMGMS show a diversity in normalization from galaxy-to-galaxy. However, in any given galaxy, the rMGMS for retired regions is found to be distinct from the star-forming sequence and gas fractions of retired spaxels are up to an order of magnitude lower than the star-forming spaxels. We conclude that quenching is associated with a depletion (but not absence) of molecular gas via a mechanism that typically begins in the centre of the galaxy.



قيم البحث

اقرأ أيضاً

The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar form ation (ALMaQUEST) survey, we show that for star forming spaxels in the main sequence galaxies, the three local quantities, star-formation rate surface density (sigsfr), stellar mass surface density (sigsm), and the h2~mass surface density (sigh2), are strongly correlated with one another and form a 3D linear (in log) relation with dispersion. In addition to the two well known scaling relations, the resolved SFMS (sigsfr~ vs. sigsm) and the Schmidt-Kennicutt relation (sigsfr~ vs. sigh2; SK relation), there is a third scaling relation between sigh2~ and sigsm, which we refer to as the `molecular gas main sequence (MGMS). The latter indicates that either the local gas mass traces the gravitational potential set by the local stellar mass or both quantities follow the underlying total mass distributions. The scatter of the resolved SFMS ($sigma sim 0.25$ dex) is the largest compared to those of the SK and MGMS relations ($sigma sim$ 0.2 dex). A Pearson correlation test also indicates that the SK and MGMS relations are more strongly correlated than the resolved SFMS. Our result suggests a scenario in which the resolved SFMS is the least physically fundamental and is the consequence of the combination of the SK and the MGMS relations.
Using a sample of 11,478 spaxels in 34 galaxies with molecular gas, star formation and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star format ion rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (Sigma_SFR), as well as its scatter around the resolved star forming main sequence (Delta Sigma_SFR). We find that Sigma_SFR is primarily regulated by molecular gas surface density (Sigma_H2) with a secondary dependence on stellar mass surface density (Sigma_*), as expected from an `extended Kennicutt-Schmidt relation. However, Delta Sigma_SFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star forming main sequence (on kpc scales) is primarily due to changes in SFE.
We present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition LCO(5-4), where LCO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift.
The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially-resolved $^{12}$CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apach e Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kpc scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations, and showcase some of the key results enabled by the combination of spatially-matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction ($f_{rm H_{2}}$), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or $f_{rm H_{2}}$) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small HI sample size. On kpc scales, the variations in both SFE and $f_{rm H_{2}}$ within individual galaxies can be as large as 1-2 dex thereby demonstrating that the availability of spatially-resolved observations is essential to understand the details of both star formation and quenching processes.
We present an initial result from the 12CO (J=1-0) survey of 79 galaxies in 62 local luminous and ultra-luminous infrared galaxy (LIRG and ULIRG) systems obtained using the 45 m telescope at the Nobeyama Radio Observatory. This is the systematic 12CO (J=1-0) survey of the Great Observatories All-sky LIRGs Survey (GOALS) sample. The molecular gas mass of the sample ranges 2.2 x 10^8 - 7.0 x 10^9 Msun within the central several kiloparsecs subtending 15 beam. A method to estimate a size of a CO gas distribution is introduced, which is combined with the total CO flux in the literature. The method is applied to a part of our sample and we find that the median CO radius is 1-4 kpc. From the early stage to the late stage of mergers, we find that the CO size decreases while the median value of the molecular gas mass in the central several kpc region is constant. Our results statistically support a scenario where molecular gas inflows towards the central region from the outer disk, to replenish gas consumed by starburst, and that such a process is common in merging LIRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا