ﻻ يوجد ملخص باللغة العربية
Hyperdoping with gallium (Ga) has been established as a route to observe superconductivity in silicon (Si). The relatively large critical temperatures (T$_{rm c}$) and magnetic fields (B$_{rm c}$) make this phase attractive for cryogenic circuit applications, particularly for scalable hybrid superconductor--semiconductor platforms. However, the robustness of Si:Ga superconductivity at millikelvin temperatures is yet to be evaluated. Here, we report the presence of a reentrant resistive transition below T$_{rm c}$ for Si:Ga whose strength strongly depends on the distribution of the Ga clusters that precipitate in the implanted Si after annealing. By monitoring the reentrant resistance over a wide parameter space of implantation energies and fluences, we determine conditions that significantly improve the coherent coupling of Ga clusters, therefore, eliminating the reentrant transition even at temperatures as low as 20~mK.
Decoherence in quantum bit circuits is presently a major limitation to their use for quantum computing purposes. We present experiments, inspired from NMR, that characterise decoherence in a particular superconducting quantum bit circuit, the quantro
Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed matter and high energy systems. However, their direct observation through collisions with conventional particles has not been considered possible.
This paper has been withdrawn by the author
We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide
We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal