ترغب بنشر مسار تعليمي؟ اضغط هنا

A SAT-based Resolution of Lams Problem

59   0   0.0 ( 0 )
 نشر من قبل Curtis Bright
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1989, computer searches by Lam, Thiel, and Swiercz experimentally resolved Lams problem from projective geometry$unicode{x2014}$the long-standing problem of determining if a projective plane of order ten exists. Both the original search and an independent verification in 2011 discovered no such projective plane. However, these searches were each performed using highly specialized custom-written code and did not produce nonexistence certificates. In this paper, we resolve Lams problem by translating the problem into Boolean logic and use satisfiability (SAT) solvers to produce nonexistence certificates that can be verified by a third party. Our work uncovered consistency issues in both previous searches$unicode{x2014}$highlighting the difficulty of relying on special-purpose search code for nonexistence results.



قيم البحث

اقرأ أيضاً

In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability for a set of clauses. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a prototype solver to several problems that are very challenging for search-based SAT solvers, obtaining polynomially sized proofs on benchmarks for parity formulas, as well as the Urquhart, mutilated chessboard, and pigeonhole problems.
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science. Its worst-case hardness lies at the core of computational complexity theory, for example in the form of NP-hardness and the (Strong) Exponential Time Hypo thesis. In practice however, SAT instances can often be solved efficiently. This contradicting behavior has spawned interest in the average-case analysis of SAT and has triggered the development of sophisticated rigorous and non-rigorous techniques for analyzing random structures. Despite a long line of research and substantial progress, most theoretical work on random SAT assumes a uniform distribution on the variables. In contrast, real-world instances often exhibit large fluctuations in variable occurrence. This can be modeled by a non-uniform distribution of the variables, which can result in distributions closer to industrial SAT instances. We study satisfiability thresholds of non-uniform random $2$-SAT with $n$ variables and $m$ clauses and with an arbitrary probability distribution $(p_i)_{iin[n]}$ with $p_1 ge p_2 ge ldots ge p_n > 0$ over the n variables. We show for $p_1^2=Theta(sum_{i=1}^n p_i^2)$ that the asymptotic satisfiability threshold is at $m=Theta( (1-sum_{i=1}^n p_i^2)/(p_1cdot(sum_{i=2}^n p_i^2)^{1/2}) )$ and that it is coarse. For $p_1^2=o(sum_{i=1}^n p_i^2)$ we show that there is a sharp satisfiability threshold at $m=(sum_{i=1}^n p_i^2)^{-1}$. This result generalizes the seminal works by Chvatal and Reed [FOCS 1992] and by Goerdt [JCSS 1996].
The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative fashion, Colour Refinement computes a colouring of th e vertices of its input graph. A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is n-1. We show that this bound is tight. More precisely, we prove via explicit constructions that there are infinitely many graphs G on which Colour Refinement takes |G|-1 iterations to stabilise. Modifying the infinite families that we present, we show that for every natural number n >= 10, there are graphs on n vertices on which Colour Refinement requires at least n-2 iterations to reach stabilisation.
We propose a new approach to SAT solving which solves SAT problems in vector spaces as a cost minimization problem of a non-negative differentiable cost function J^sat. In our approach, a solution, i.e., satisfying assignment, for a SAT problem in n variables is represented by a binary vector u in {0,1}^n that makes J^sat(u) zero. We search for such u in a vector space R^n by cost minimization, i.e., starting from an initial u_0 and minimizing J to zero while iteratively updating u by Newtons method. We implemented our approach as a matrix-based differential SAT solver MatSat. Although existing main-stream SAT solvers decide each bit of a solution assignment one by one, be they of conflict driven clause learning (CDCL) type or of stochastic local search (SLS) type, MatSat fundamentally differs from them in that it continuously approach a solution in a vector space. We conducted an experiment to measure the scalability of MatSat with random 3-SAT problems in which MatSat could find a solution up to n=10^5 variables. We also compared MatSat with four state-of-the-art SAT solvers including winners of SAT competition 2018 and SAT Race 2019 in terms of time for finding a solution, using a random benchmark set from SAT 2018 competition and an artificial random 3-SAT instance set. The result shows that MatSat comes in second in both test sets and outperforms all the CDCL type solvers.
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems. The increasing popularity of these constraint problems in electronic design automation encourages studies on different SAT problems and their properties for fur ther computational efficiency. There has been both theoretical and practical success of modern Conflict-driven clause learning SAT solvers, which allows solving very large industrial instances in a relatively short amount of time. Recently, machine learning approaches provide a new dimension to solving this challenging problem. Neural symbolic models could serve as generic solvers that can be specialized for specific domains based on data without any changes to the structure of the model. In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem, which is the optimization version of SAT where the goal is to satisfy the maximum number of clauses. Our model has a scale-free structure which could process varying size of instances. We use meta-path and self-attention mechanism to capture interactions among homogeneous nodes. We adopt cross-attention mechanisms on the bipartite graph to capture interactions among heterogeneous nodes. We further apply an iterative algorithm to our model to satisfy additional clauses, enabling a solution approaching that of an exact-SAT problem. The attention mechanisms leverage the parallelism for speedup. Our evaluation indicates improved speedup compared to heuristic approaches and improved completion rate compared to machine learning approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا