ﻻ يوجد ملخص باللغة العربية
Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole.
We investigate finite lattice approximations to the Wilson Renormalization Group in models of unconstrained spins. We discuss first the properties of the Renormalization Group Transformation (RGT) that control the accuracy of this type of approximati
A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories.
We consider the theory of spinor fields written in polar form, that is the form in which the spinor components are given in terms of a module times a complex unitary phase respecting Lorentz covariance. In this formalism, spinors can be treated in th
Asymptotic single-particle states in quantum field theories with small departures from Lorentz symmetry are investigated perturbatively with focus on potential phenomenological ramifications. To this end, one-loop radiative corrections for a sample L
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observa