ﻻ يوجد ملخص باللغة العربية
Dimension reduction (DR) techniques such as t-SNE, UMAP, and TriMAP have demonstrated impressive visualization performance on many real world datasets. One tension that has always faced these methods is the trade-off between preservation of global structure and preservation of local structure: these methods can either handle one or the other, but not both. In this work, our main goal is to understand what aspects of DR methods are important for preserving both local and global structure: it is difficult to design a better method without a true understanding of the choices we make in our algorithms and their empirical impact on the lower-dimensional embeddings they produce. Towards the goal of local structure preservation, we provide several useful design principles for DR loss functions based on our new understanding of the mechanisms behind successful DR methods. Towards the goal of global structure preservation, our analysis illuminates that the choice of which components to preserve is important. We leverage these insights to design a new algorithm for DR, called Pairwise Controlled Manifold Approximation Projection (PaCMAP), which preserves both local and global structure. Our work provides several unexpected insights into what design choices both to make and avoid when constructing DR algorithms.
A first line of attack in exploratory data analysis is data visualization, i.e., generating a 2-dimensional representation of data that makes clusters of similar points visually identifiable. Standard Johnson-Lindenstrauss dimensionality reduction do
Modern datasets and models are notoriously difficult to explore and analyze due to their inherent high dimensionality and massive numbers of samples. Existing visualization methods which employ dimensionality reduction to two or three dimensions are
We introduce an improved unsupervised clustering protocol specially suited for large-scale structured data. The protocol follows three steps: a dimensionality reduction of the data, a density estimation over the low dimensional representation of the
Based on the theory of reproducing kernel Hilbert space (RKHS) and semiparametric method, we propose a new approach to nonlinear dimension reduction. The method extends the semiparametric method into a more generalized domain where both the intereste
Inference with population genetic data usually treats the population pedigree as a nuisance parameter, the unobserved product of a past history of random mating. However, the history of genetic relationships in a given population is a fixed, unobserv