ﻻ يوجد ملخص باللغة العربية
We explore possible physical origin of correlation between radio wave and very-high-energy neutrino emission in active galactic nuclei (AGN), suggested by recently reported evidence for correlation between neutrino arrival directions and positions of brightest radio-loud AGN. We show that such correlation is expected if both synchrotron emitting electrons and neutrinos originate from decays of charged pions produced in proton-proton interactions in parsec-scale relativistic jet propagating through circum-nuclear medium of the AGN.
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter
To explain X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pa
We estimate the neutrino emission from the decay chain of the $pi$-meson and $mu$-lepton, produced by proton-proton inelastic scattering in energetic ($E_{rm iso}gtrsim 10^{52}$~erg) long gamma-ray bursts (GRBs), within the type I binary-driven hyper
We calculate the diffuse $gamma$-ray emission due to the population of misaligned AGN (MAGN) unresolved by the Large Area Telescope (LAT) on the {it Fermi} Gamma-ray Space Telescope ({it Fermi}). A correlation between the $gamma$-ray luminosity and t
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this cla