ﻻ يوجد ملخص باللغة العربية
Recently end-to-end scene text spotting has become a popular research topic due to its advantages of global optimization and high maintainability in real applications. Most methods attempt to develop various region of interest (RoI) operations to concatenate the detection part and the sequence recognition part into a two-stage text spotting framework. However, in such framework, the recognition part is highly sensitive to the detected results (emph{e.g.}, the compactness of text contours). To address this problem, in this paper, we propose a novel Mask AttentioN Guided One-stage text spotting framework named MANGO, in which character sequences can be directly recognized without RoI operation. Concretely, a position-aware mask attention module is developed to generate attention weights on each text instance and its characters. It allows different text instances in an image to be allocated on different feature map channels which are further grouped as a batch of instance features. Finally, a lightweight sequence decoder is applied to generate the character sequences. It is worth noting that MANGO inherently adapts to arbitrary-shaped text spotting and can be trained end-to-end with only coarse position information (emph{e.g.}, rectangular bounding box) and text annotations. Experimental results show that the proposed method achieves competitive and even new state-of-the-art performance on both regular and irregular text spotting benchmarks, i.e., ICDAR 2013, ICDAR 2015, Total-Text, and SCUT-CTW1500.
A precise, controllable, interpretable and easily trainable text removal approach is necessary for both user-specific and large-scale text removal applications. To achieve this, we propose a one-stage mask-based text inpainting network, MTRNet++. It
Many tasks are related to determining if a particular text string exists in an image. In this work, we propose a new framework that learns this task in an end-to-end way. The framework takes an image and a text string as input and then outputs the pr
Chinese keyword spotting is a challenging task as there is no visual blank for Chinese words. Different from English words which are split naturally by visual blanks, Chinese words are generally split only by semantic information. In this paper, we p
Most of the existing single-stage and two-stage 3D object detectors are anchor-based methods, while the efficient but challenging anchor-free single-stage 3D object detection is not well investigated. Recent studies on 2D object detection show that t
Scene text detection task has attracted considerable attention in computer vision because of its wide application. In recent years, many researchers have introduced methods of semantic segmentation into the task of scene text detection, and achieved