ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of magnetic fields surrounding LkH$alpha$ 101 taken by the BISTRO survey with JCMT-POL-2

218   0   0.0 ( 0 )
 نشر من قبل Pham Ngoc Diep Assoc. Prof. Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first high spatial resolution measurement of magnetic fields surrounding LkH$alpha$ 101, a part of the Auriga-California molecular cloud. The observations were taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope within the framework of the B-fields In Star-forming Region Observations (BISTRO) survey. Observed polarization of thermal dust emission at 850 $mu$m is found to be mostly associated with the red-shifted gas component of the cloud. The magnetic field displays a relatively complex morphology. Two variants of the Davis-Chandrasekhar-Fermi method, unsharp masking and structure function, are used to calculate the strength of magnetic fields in the plane of the sky, yielding a similar result of $B_{rm POS}sim 115$ $mathrm{mu}$G. The mass-to-magnetic-flux ratio in critical value units, $lambdasim0.3$, is the smallest among the values obtained for other regions surveyed by POL-2. This implies that the LkH$alpha$ 101 region is sub-critical and the magnetic field is strong enough to prevent gravitational collapse. The inferred $delta B/B_0sim 0.3$ implies that the large scale component of the magnetic field dominates the turbulent one. The variation of the polarization fraction with total emission intensity can be fitted by a power-law with an index of $alpha=0.82pm0.03$, which lies in the range previously reported for molecular clouds. We find that the polarization fraction decreases rapidly with proximity to the only early B star (LkH$alpha$ 101) in the region. The magnetic field tangling and the joint effect of grain alignment and rotational disruption by radiative torques are potential of explaining such a decreasing trend.



قيم البحث

اقرأ أيضاً

We present 850$mu$m polarization observations of the L1689 molecular cloud, part of the nearby Ophiuchus molecular cloud complex, taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We observe three regions of L1689: the clu mp L1689N which houses the IRAS 16293-2422 protostellar system, the starless clump SMM-16, and the starless core L1689B. We use the Davis-Chandrasekhar-Fermi method to estimate plane-of-sky field strengths of $366pm 55$ $mu$G in L1689N, $284pm 34$ $mu$G in SMM-16, and $72pm 33$ $mu$G in L1689B, for our fiducial value of dust opacity. These values indicate that all three regions are likely to be magnetically trans-critical with sub-Alfv{e}nic turbulence. In all three regions, the inferred mean magnetic field direction is approximately perpendicular to the local filament direction identified in $Herschel$ Space Telescope observations. The core-scale field morphologies for L1689N and L1689B are consistent with the cloud-scale field morphology measured by the $Planck$ Space Observatory, suggesting that material can flow freely from large to small scales for these sources. Based on these magnetic field measurements, we posit that accretion from the cloud onto L1689N and L1689B may be magnetically regulated. However, in SMM-16, the clump-scale field is nearly perpendicular to the field seen on cloud scales by $Planck$, suggesting that it may be unable to efficiently accrete further material from its surroundings.
We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-forming regions with the mean orientations of the magnetic fields on 0.05-0.5 pc scales in the dense cores/clumps where they are embedded . The magnetic field orientations were measured using the JCMT POL-2 data taken by the BISTRO-1 survey and from the archive. The outflow directions were observed with interferometers in the literature. The observed distribution of the angles between the outflows and the magnetic fields peaks between 15 and 35 degrees. After considering projection effects, our results could suggest that the outflows tend to be misaligned with the magnetic fields by 50+/-15 degrees in three-dimensional space and are less likely (but not ruled out) randomly oriented with respect to the magnetic fields. There is no correlation between the misalignment and the bolometric temperatures in our sample. In several sources, the small-scale (1000-3000 au) magnetic fields is more misaligned with the outflows than their large-scale magnetic fields, suggesting that the small-scale magnetic field has been twisted by the dynamics. In comparison with turbulent MHD simulations of core formation, our observational results are more consistent with models in which the energy densities in the magnetic field and the turbulence of the gas are comparable. Our results also suggest that the misalignment alone cannot sufficiently reduce the efficiency of magnetic braking to enable formation of the observed number of large Keplerian disks with sizes larger than 30-50 au.
We present the first 850 $mu$m polarization observations in the most active star-forming site of the Rosette Molecular Cloud (RMC, $dsim$1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the JCMT, as part of the B-Fields In Star-Forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 $mu$m continuum intensity with $alpha$ = 0.49 $pm$ 0.08 in the $p propto I^{rm -alpha}$ relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 $mu$m image reveals a gemstone ring morphology, which is a $sim$1 pc-diameter ring-like structure with extended emission in the head to the south-west. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments which follow Infrared Dark Clouds (IRDCs). Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is $sim$ 174 $M_odot$ that we calculate from 850 $mu$m flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 $mu$m data, and find agreement within 30%. We estimate the POS B-field strength in one typical subregion using the Davis-Chandrasekhar-Fermi (DCF) technique and find 80 $pm$ 30 $mu$G toward a clump and its outskirts. The estimated mass-to-flux ratio of $lambda$ = 2.3 $pm$ 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion.
We present new observations of the active star-formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (~1.5 pc x 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ~1 pc and remains continuous from the scales of filaments (~0.1 pc) to that of protostellar envelopes (~0.005 pc or ~1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network.
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations (BISTRO) survey. We detect an ordered magnetic field projected on the plane of sky in the starless core. The magnetic field across the $sim$0.1~pc core shows a predominant northeast-southwest orientation centering between $sim$40$^circ$ to $sim$100$^circ$, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage ($P$) decreases with an increasing total intensity ($I$) with a power-law index of $-$1.03 $pm$ 0.05. We estimate the plane-of-sky field strength ($B_{mathrm{pos}}$) using modified Davis-Chandrasekhar-Fermi (DCF) methods based on structure function (SF), auto-correlation (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 $pm$ 46 $mu$G, 136 $pm$ 69 $mu$G, and 213 $pm$ 115 $mu$G, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e. unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا