ﻻ يوجد ملخص باللغة العربية
Advances in face rotation, along with other face-based generative tasks, are more frequent as we advance further in topics of deep learning. Even as impressive milestones are achieved in synthesizing faces, the importance of preserving identity is needed in practice and should not be overlooked. Also, the difficulty should not be more for data with obscured faces, heavier poses, and lower quality. Existing methods tend to focus on samples with variation in pose, but with the assumption data is high in quality. We propose a generative adversarial network (GAN) -based model to generate high-quality, identity preserving frontal faces from one or multiple low-resolution (LR) faces with extreme poses. Specifically, we propose SuperFront-GAN (SF-GAN) to synthesize a high-resolution (HR), frontal face from one-to-many LR faces with various poses and with the identity-preserved. We integrate a super-resolution (SR) side-view module into SF-GAN to preserve identity information and fine details of the side-views in HR space, which helps model reconstruct high-frequency information of faces (i.e., periocular, nose, and mouth regions). Moreover, SF-GAN accepts multiple LR faces as input, and improves each added sample. We squeeze additional gain in performance with an orthogonal constraint in the generator to penalize redundant latent representations and, hence, diversify the learned features space. Quantitative and qualitative results demonstrate the superiority of SF-GAN over others.
We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout. This new setting allows users to provide the layout of salient objects only (i.e., foreground bounding boxes and
A non-parametric low-resolution face recognition model for resource-constrained environments with limited networking and computing is proposed in this work. Such environments often demand a small model capable of being effectively trained on a small
Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsam
Recently sparse representation has gained great success in face image super-resolution. The conventional sparsity-based methods enforce sparse coding on face image patches and the representation fidelity is measured by $ell_{2}$-norm. Such a sparse c
Current face recognition tasks are usually carried out on high-quality face images, but in reality, most face images are captured under unconstrained or poor conditions, e.g., by video surveillance. Existing methods are featured by learning data unce