ترغب بنشر مسار تعليمي؟ اضغط هنا

Three new late-type stellar companions to very dusty WISE debris disks identified with VLT/SPHERE imaging

307   0   0.0 ( 0 )
 نشر من قبل Elisabeth Matthews
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Debris disk stars are good targets for high contrast imaging searches for planetary systems, since debris disks have been shown to have a tentative correlation with giant planets. We selected 20 stars identified as debris disk hosts by the WSIE mission, with particularly high levels of warm dust. We observed these with the VLT/SPHERE high contrast imaging instrument with the goal of finding planets and imaging the disks in scattered light. Our survey reaches a median 5$sigma$~sensitivity of 10.4Mj at 25au and 5.9Mj at 100au. We identified three new stellar companions (HD18378B, HD19257B and HD133778B): two are mid-M type stars and one is late-K or early-M star. Three additional stars have very widely separated stellar companions (all at $>$2000au) identified in the Gaia catalog. The stars hosting the three SPHERE-identified companions are all older ($gtrsim$700Myr), with one having recently left the main sequence and one a giant star. We infer that the high volumes of dust observed around these stars might have been caused by a recent collision between the planets and planetesimal belts in the system, although for the most evolved star, mass loss could also be responsible for the infrared excess. Future mid-IR spectroscopy or polarimetric imaging may allow the positions and spatial extent of these dust belts to be constrained, thereby providing evidence as to the true cause of the elevated levels of dust around these old systems. None of the disks in this survey are resolved in scattered light.



قيم البحث

اقرأ أيضاً

117 - G. Cugno 2018
Aims: We want to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structu res thought to be the result of interactions with planets. Methods: We analyzed observations of 6 young stars (age $3.5-10$ Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the VLT in the H$alpha$ filter (656 nm) and a nearby continuum filter (644.9 nm). Results: We re-detect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H$alpha$ and the continuum. We derive new astrometry ($r = 62.8^{+2.1}_{-2.7}$ mas and $text{PA} = (98.7,pm1.8)^circ$) and photometry ($Delta$N_Ha=$6.3^{+0.2}_{-0.3}$ mag, $Delta$B_Ha=$6.7pm0.2$ mag and $Delta$Cnt_Ha=$7.3^{+0.3}_{-0.2}$ mag) for the companion in agreement with previous studies, and estimate its mass accretion rate ($dot{M}approx1-2,times10^{-10},M_odottext{ yr}^{-1}$). A faint point-like source around HD135344 B (SAO206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142 and MWC758 and calculate that processes involving H$alpha$ fluxes larger than $sim8times10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}>10^{-10}-10^{-12},M_odottext{ yr}^{-1}$) can be excluded. Furthermore, flux upper limits of $sim10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}<10^{-11}-10^{-12},M_odot text{ yr}^{-1}$) are estimated within the gaps identified in the disks surrounding HD135344B and TW Hya.
We present simulations of the capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and of a Next Generation Very Large Array (ngVLA) to detect and resolve substructures due to terrestrial planets and Super-Earths in nearby planet-f orming disks. We adopt the results of global 2-D hydrodynamical planet-disk simulations that account for the dynamics of gas and dust in a disk with an embedded planet. Our simulations follow the combined evolution of gas and dust for several thousand planetary orbits. We show that long integrations (several tens of hours) with the ngVLA can detect and spatially resolve dust structures due to low-mass rocky planets in the terrestrial planet formation regions of nearby disks (stellocentric radii $r = 1 - 3$ au), under the assumption that the disk viscosity in those regions is low ($alpha le 10^{-5}$). ALMA is instead unable to resolve these structures in these disk regions. We also show that high-resolution ngVLA observations separated by several days to few weeks would allow to detect the proper motion of the azimuthally asymmetric structures expected in the disk regions of terrestrial planet formation.
Near-IR polarimetric images of protoplanetary disks enable us to characterize substructures that might be due to the interaction with (forming) planets. The available census is strongly biased toward massive disks around old stars, however. The DARTT S program aims at alleviating this bias by imaging a large number of T Tauri stars with diverse properties. In this work, we present new SPHERE images of 21 circumstellar disks, which is the largest sample released to date. The targets of this work are significantly younger than those published thus far with polarimetric near-IR (NIR) imaging. Scattered light is unambiguously resolved in 11 targets, and some polarized unresolved signal is detected in 3 additional sources. Some disk substructures are detected. However, the paucity of spirals and shadows from this sample reinforces the trend according to which these NIR features are associated with Herbig stars, either because they are older or more massive. Furthermore, disk rings that are apparent in ALMA observations of some targets do not appear to have corresponding detections with SPHERE. Inner cavities larger than 15 au are also absent from our images, even though they are expected from the spectral energy distribution. On the other hand, 3 objects show extended filaments at larger scale that are indicative of strong interaction with the surrounding medium. All but one of the undetected disks are best explained by their limited size (less than 20 au), and the high occurrence of stellar companions in these sources suggests an important role in limiting the disk size. One undetected disk is massive and very large at millimeter wavelengths, implying that it is self-shadowed in the NIR. This work paves the way toward a more complete and less biased sample of scattered-light observations, which is required to interpret how disk features evolve throughout the disk lifetime.
Mid-infrared imaging traces the sub-micron and micron sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks . We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-infrared images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-infrared observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. We derotate and stack the data to find the disk properties. Where available we compare the data to ProDiMo (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We apply the circularised PSF subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. We resolve three of the six disks and calculate position angles, inclinations and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refine the existing ProDiMo HD 100546 model SED fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increase the outer cavity radius to 22.3 AU. We produce flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with $L > 0.0028 L_{odot}$ for $a > 180$ AU in the HD 100546 system. Upper limits of 0.5 mJy-30 mJy are obtained at 8 $mu$m-12 $mu$m for potential companions in the different disks.
Observations of debris disks, the products of the collisional evolution of rocky planetesimals, can be used to trace planetary activity across a wide range of stellar types. The most common end points of stellar evolution are no exception as debris d isks have been observed around several dozen white dwarf stars. But instead of planetary formation, post-main-sequence debris disks are a signpost of planetary destruction, resulting in compact debris disks from the tidal disruption of remnant planetesimals. In this work, we present the discovery of five new debris disks around white dwarf stars with gaseous debris in emission. All five systems exhibit excess infrared radiation from dusty debris, emission lines from gaseous debris, and atmospheric absorption features indicating on-going accretion of metal-rich debris. In four of the systems, we detect multiple metal species in emission, some of which occur at strengths and transitions previously unseen in debris disks around white dwarf stars. Our first year of spectroscopic follow-up hints at strong variability in the emission lines that can be studied in the future, expanding the range of phenomena these post-main-sequence debris disks exhibit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا