ترغب بنشر مسار تعليمي؟ اضغط هنا

Reverberant Sound Localization with a Robot Head Based on Direct-Path Relative Transfer Function

64   0   0.0 ( 0 )
 نشر من قبل Radu Horaud P
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the problem of sound-source localization (SSL) with a robot head, which remains a challenge in real-world environments. In particular we are interested in locating speech sources, as they are of high interest for human-robot interaction. The microphone-pair response corresponding to the direct-path sound propagation is a function of the source direction. In practice, this response is contaminated by noise and reverberations. The direct-path relative transfer function (DP-RTF) is defined as the ratio between the direct-path acoustic transfer function (ATF) of the two microphones, and it is an important feature for SSL. We propose a method to estimate the DP-RTF from noisy and reverberant signals in the short-time Fourier transform (STFT) domain. First, the convolutive transfer function (CTF) approximation is adopted to accurately represent the impulse response of the microphone array, and the first coefficient of the CTF is mainly composed of the direct-path ATF. At each frequency, the frame-wise speech auto- and cross-power spectral density (PSD) are obtained by spectral subtraction. Then a set of linear equations is constructed by the speech auto- and cross-PSD of multiple frames, in which the DP-RTF is an unknown variable, and is estimated by solving the equations. Finally, the estimated DP-RTFs are concatenated across frequencies and used as a feature vector for SSL. Experiments with a robot, placed in various reverberant environments, show that the proposed method outperforms two state-of-the-art methods.



قيم البحث

اقرأ أيضاً

We present a novel learning-based approach to compute the eigenmodes and acoustic transfer data for the sound synthesis of arbitrary solid objects. Our approach combines two network-based solutions to formulate a complete learning-based 3D modal soun d model. This includes a 3D sparse convolution network as the eigendecomposition solver and an encoder-decoder network for the prediction of the Far-Field Acoustic Transfer maps (FFAT Maps). We use our approach to compute the vibration modes (eigenmodes) and FFAT maps for each mode (acoustic data) for arbitrary-shaped objects at interactive rates without any precomputed dataset for any new object. Our experimental results demonstrate the effectiveness and benefits of our approach. We compare its accuracy and efficiency with physically-based sound synthesis methods.
This article is a survey on deep learning methods for single and multiple sound source localization. We are particularly interested in sound source localization in indoor/domestic environment, where reverberation and diffuse noise are present. We pro vide an exhaustive topography of the neural-based localization literature in this context, organized according to several aspects: the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. This way, an interested reader can easily comprehend the vast panorama of the deep learning-based sound source localization methods. Tables summarizing the literature survey are provided at the end of the paper for a quick search of methods with a given set of target characteristics.
In this work, we present the development of a new database, namely Sound Localization and Classification (SLoClas) corpus, for studying and analyzing sound localization and classification. The corpus contains a total of 23.27 hours of data recorded u sing a 4-channel microphone array. 10 classes of sounds are played over a loudspeaker at 1.5 meters distance from the array by varying the Direction-of-Arrival (DoA) from 1 degree to 360 degree at an interval of 5 degree. To facilitate the study of noise robustness, 6 types of outdoor noise are recorded at 4 DoAs, using the same devices. Moreover, we propose a baseline method, namely Sound Localization and Classification Network (SLCnet) and present the experimental results and analysis conducted on the collected SLoClas database. We achieve the accuracy of 95.21% and 80.01% for sound localization and classification, respectively. We publicly release this database and the source code for research purpose.
Sound event localization aims at estimating the positions of sound sources in the environment with respect to an acoustic receiver (e.g. a microphone array). Recent advances in this domain most prominently focused on utilizing deep recurrent neural n etworks. Inspired by the success of transformer architectures as a suitable alternative to classical recurrent neural networks, this paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms. Additionally, the estimated sound event positions are represented as multivariate Gaussian variables, yielding an additional notion of uncertainty, which many previously proposed deep learning-based systems designed for this application do not provide. The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy. It outperforms all competing systems on all datasets with statistical significant differences in performance.
Time-domain training criteria have proven to be very effective for the separation of single-channel non-reverberant speech mixtures. Likewise, mask-based beamforming has shown impressive performance in multi-channel reverberant speech enhancement and source separation. Here, we propose to combine neural network supported multi-channel source separation with a time-domain training objective function. For the objective we propose to use a convolutive transfer function invariant Signal-to-Distortion Ratio (CI-SDR) based loss. While this is a well-known evaluation metric (BSS Eval), it has not been used as a training objective before. To show the effectiveness, we demonstrate the performance on LibriSpeech based reverberant mixtures. On this task, the proposed system approaches the error rate obtained on single-source non-reverberant input, i.e., LibriSpeech test_clean, with a difference of only 1.2 percentage points, thus outperforming a conventional permutation invariant training based system and alternative objectives like Scale Invariant Signal-to-Distortion Ratio by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا