ﻻ يوجد ملخص باللغة العربية
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric drying device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.
We report a novel technique to passively create strong secondary flows at moderate to high flow rates in microchannels, accurately control them and finally, due to their deterministic nature, program them into microfluidic platforms. Based on the flo
In fully-developed pressure-driven flow, the spreading of a dissolved solute is enhanced in the flow direction due to transverse velocity variations in a phenomenon now commonly referred to as Taylor-Aris dispersion. It is well understood that the ch
We present a theoretical framework for immiscible incompressible two-phase flow in homogeneous porous media that connects the distribution of local fluid velocities to the average seepage velocities. By dividing the pore area along a cross-section tr
We study flow driven through a finite-length planar rigid channel by a fixed upstream flux, where a segment of one wall is replaced by a pre-stressed elastic beam subject to uniform external pressure. The steady and unsteady systems are solved using
Long, shallow microchannels embedded in thick soft materials are widely used in microfluidic devices for lab-on-a-chip applications. However, the bulging effect caused by fluid--structure interactions between the internal viscous flow and the soft wa