ﻻ يوجد ملخص باللغة العربية
In conventional Hermitian systems with the open boundary condition, Blochs theorem is perturbatively broken down, which means although the crystal momentum is not a good quantum number, the eigenstates are the superposition of several extended Bloch waves. In this paper, we show that Blochs theorem can be non-perturbatively broken down in some Hermitian Bosonic systems. The quasiparticles of the system are the superposition of localized non-Bloch waves, which are characterized by the complex momentum whose imaginary part determines the localization properties. Our work is a Hermitian generalization of the non-Hermitian skin effect, although they share the same mechanism.
In this paper, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on
Non-Hermitian topological systems exhibit a plethora of unusual topological phenomena that are absent in the Hermitian systems. One of these key features is the extreme eigenstate localization of eigenstates, also known as non-Hermitian skin effect (
We provide a systematic and self-consistent method to calculate the generalized Brillouin Zone (GBZ) analytically in one dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-b
We predict the existence of non-Hermitian topologically protected end states in a one-dimensional exciton-polariton condensate lattice, where topological transitions are driven by the laser pump pattern. We show that the number of end states can be d
Nonlinear topological photonics is an emerging field aiming at extending the fascinating properties of topological states to the realm where interactions between the system constituents cannot be neglected. Interactions can indeed trigger topological